
NPS-OR-04-004

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited.

 Prepared for: Operations Research Department
 Naval Postgraduate School
 Monterey, CA 93943-5219

Computational Support for the Study of Lifetime

Distribution Characteristics

by

Robert R. Read

April 2004

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
April 2004

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE: Computational Support for the Study of Lifetime
Distribution Characteristics

6. AUTHOR(S) Robert R. Read

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER NPS-OR-04-004

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The report develops and makes available programs that treat the support functions of a set of survivor distributions:

Weibull, Gamma, and Lognormal. The issues of model characterization functions, maximum likelihood estimation, bias
reduction, and censored samples are treated generally. The general material is made explicit for the distributions named. It
features open code, allowing the user to pursue plans of his own.

The paper also contains some items of more general interest. First, a technique is developed that offers substantial
reduction in the dependence of the initialization values for the success of the Newton-Raphson iteration technique. Second,
high-precision, numerical analysis techniques are developed for the parallel computation of several derivatives of the
Incomplete Gamma function.

15. NUMBER OF
PAGES

92

14. SUBJECT TERMS
Reliability, Censored data, Lifetime Distributions, maximum likelihood estimation, confidence
regions

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

 ii

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943-5000

RDML Patrick W. Dunne, USN Richard Elster
Superintendent Provost

This report was prepared for and funded by the Operations Research Department, Naval
Postgraduate School, Monterey, CA 93943-5219.

Reproduction of all or part of this report is authorized.

This report was prepared by:

ROBERT R. READ
Professor of Operations Research

Reviewed by:

LYN R. WHITAKER Released by:
Associate Chairman for Research
Department of Operations Research

JAMES N. EAGLE LEONARD A. FERRARI, Ph.D.
Chairman Associate Provost and Dean of Research
Department of Operations Research

 iii

Computational Support for the Study of Lifetime Distribution
Characteristics

R. R. Read

ABSTRACT

The report develops and makes available programs

that treat the support functions of a set of survivor
distributions: Weibull, Gamma, and Lognormal. The issues
of model characterization functions, maximum likelihood
estimation, bias reduction, and censored samples are treated
generally. The general material is made explicit for the
distributions named. It features open code, allowing the
user to pursue plans of his own.

The paper also contains some items of broader
interest. First, a technique is developed that offers
substantial reduction in the dependence of the initialization
values for the success of the Newton-Raphson iteration
technique. Second, high-precision, numerical analysis
techniques are developed for the parallel computation of
several derivatives of the Incomplete Gamma function.

 1

1. Introduction

 Much has been written on life length distribution applications—especially those
in the field of reliability. The first course textbooks usually cover the ground well, but the
examples often are shallow because there are so few distributions that can readily be
managed, supported only by the calculus. The computational aspects are extremely easy
when dealing with the exponential distribution, and they become quite difficult when
using other common distributions. This situation creates difficulties in the teaching of
first courses, the writing of textbooks, and, of course, in the execution of research. The
use of the exponential distribution becomes overworked and dull, and its sole use masks
the dangers that can be encountered.

The present report offers useful relief to these problems. Algorithms and S-Plus
code are developed so that the user can explore on the computer the consequences of
using the Weibull, Gamma, and Lognormal distributions. Also, a general mathematical
structure is presented so that a programmer can extend and deal with other distribution
families.

At the same time, we are beginning to see products of this type from other
software writers. The Splida system by Meeker and Alvarez has completed beta testing
and has appeared on the market. This system appears to be very comprehensive. It is
written in S-Plus and features a large number of specialized drop-down dialog menus. A
product named Reliasoft is already on the market. It too requires that the user fill out
dialog boxes. The present work is far less ambitious, but contains open S-Plus code that
allows the user to deal directly with issues of his own choosing and to check the precision
of his solutions. It contains a number of command line functions that a user can integrate
into his own specialized problem-solving package. (Meeker offers to supply computer
code upon request; it is not known whether this includes the supporting algorithmic
analysis.)

Attention is restricted to the continuous time life length variables. General
formulae are developed for these. A first goal is to compute and graph five basic support
functions, namely,

f(t) = probability density functions (pdf),
S(t) = survivor function,
h(t) = hazard function,
H(t) = cumulative hazard function,
LL(t) = expected residual life.

The first two often are included in the standard statistical software packages. The

others usually require the practitioner to exercise some calculus and programming. The
user should be familiar with the shapes of these functions and how they vary from model
to model. In fact, model selection is often a judgment call rather than a statistical
exercise. In terms of these support functions, some model comparative graphing can be
quite valuable.

 2

Complete samples are those for which the testing process is not finished until all
objects have realized their entire lifetimes. In these cases, the stock statistical methods are
utilized. One usually calls upon maximum likelihood to serve for parameter estimation.
These have well studied properties. They are not easy to find and often iterative methods
are created for this purpose. Seldom are these available in the standard statistical software
packages. The report contains examples of how one can generate such methods. The
large sample theory for maximum likelihood estimators is well established and it is used
to create confidence regions for the parameters.

Generally, maximum likelihood estimators are known to be biased. This issue has
not received great attention. The methods for dealing with it are difficult and the effects
are not believed to be great, except possibly for small sample sizes. But the report does
consider a first order bias reduction method and applies it to the models treated. At least
the reader is allowed to view the nature of the problem.

Recent times have seen the development of methods to manage censored life
length data, i.e., data collection plans that do not collect full life length information on all
subjects. We consider right-censored data only, i.e., each subject is either observed to
expire or has survived beyond a known point. Plans that await a complete data set are
often too expensive. The maximum likelihood point estimation schemes are available in
concept, but the implementation is often intricate and requires special methods. The
iteration functions utilized are advertised as requiring high quality initialization points. A
method is proposed that appears to give substantial relief to this problem and shows great
promise at this point in time.

When dealing with the gamma distribution in the censored case, one must face the
computation of the derivatives of the incomplete gamma function. Methods for
accomplishing this are developed.

The report is organized as follows. Section 2 contains the general mathematical
structure for the support functions, for complete samples, for a bias reduction method and
for censored samples. This is followed, in Section 3, by the presentation of some
computations and graphs typical of the capabilities that are being supported. This part
does much to illustrate the use of the programs and the kinds of issues that may be
addressed. The reader who is well versed in the issues will find this chapter most useful
as it identifies the programs and illustrates their use. Sections 4, 5, and 6 treat the
mathematical details for the three popular distributions: Weibull, Gamma, and
Lognormal, respectively. Explicit formulae are developed for the characterizing support
functions, the treatment of complete samples with maximum likelihood, bias reduction,
and methods for censored samples.

Two data sets have been enlisted to test the programs in Section 3. The Lieblein
and Zelen (1956) ball-bearing data is utilized for complete samples. It consists of 23
failure times of ball bearings measured in millions of revolutions. It has been exploited
by [Meeker and Escobar, p. 4] to illustrate the model-fitting problem. A similar use is
presented in Section 3. The data are

 3

BallB: 17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84 51.96 54.12 67.80
 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40

A second data set was chosen to test the methods that involve censoring. It is the
set of survival times for multiple myeloma patients from [Lawless, p. 337] consisting of
48 complete lifetimes, x and 17 right-censored values, t. Both are measured in months.
The data are

myeloma:
x: 1 1 2 2 2 3 5 5 6 6 6 6 7 7 7 9 11 11 11 11 11 13 14
 15 16 16 17 17 18 19 19 24 25 26 32 35 37 41 42 51 52 54 58 66 67 88
 89 92

t: 4 4 7 7 8 12 11 12 13 16 19 19 28 41 53 57 77

Fuller details of implementation of the methods are contained in five appendices.

They treat specialized subjects and each contains supporting S-Plus listings. Their
contents are:

Appendix A. Asymptotic Expansions for the Polygamma Functions.

Appendix B. Analysis for Computational Support of the Weibull Distribution.

Appendix C. Implementation of the General Censored Data Estimation Scheme.

Appendix D. Derivatives of the Incomplete Gamma Function.

Appendix E. S-Plus Listings of Miscellaneous Code.

The programs can be obtained in electronic form by contacting the author.

 4

2. General Formula

The specialized programs follow a general structure, which is presented here. A
number of computational situations are envisioned. Only the continuous case is treated.
First, we deal with important support functions used in reliability and lifetime analysis.
This includes a visit to the optimal planned replacement policy formulae. Second, the
basic maximum likelihood estimation procedures for complete samples is presented. This
includes iteration schemes for finding the solution, the information matrix, and the
construction of asymptotic confidence regions. This also includes the method for
reducing the sensitivity of the initialization values. Third, the development of a general
technique for bias reduction is considered. Fourth, the general structure for dealing with
maximum likelihood estimation for right-censored samples is presented.

Code is needed for the exploration of the properties of various models.
Relationships among the various functions are summarized [Leemis, p. 55]. Those that
are most useful in the present work are listed. A continuous life length random variable X
has a probability density function, f(t) and a cumulative distribution function F(t). From
these one can characterize others.

2a. Model Characterization Functions

The survivor function:

 S(t) =
t

f (u)du
∞

∫ = 1 − F(t) = Pr{X ≥ t}. (2.1)

The hazard function, age specific failure rate:

 h(t) = f(t)/S(t) = H'(t). (2.2)

The cumulative hazard function:

 H(t) =
t

0
h(u)du∫ = − ln[S(t)]. (2.3)

The integrated survivor function:

 SS(t) =
t

S(u)du
∞

∫ . (2.4)

The mean residual life :

LL(t) =
t

u f (u)du / S(t)
∞

∫ = SS(t)/S(t) = E{X − t | X > t}. (2.5)

2b. Cost Calculation of Planned Replacement Policies

Let us examine the effect of model choice when a planned replacement policy is
considered. Such policies can be advantageous when dealing with an IFR system and the

 5

cost of a planned replacement is lower than the cost of replacing at failure. The structure
of the calculation is developed in [Barlow and Proschan].

Let k > 0 be the cost of a planned replacement, but if the replacement must
happen because of a device failure then an additional cost c is incurred to be added to k.
Let Rn be the cost of the nth replacement, and Xn is the lifelength of the nth unit placed in
service. The system { }Xn is assumed to be i.i.d. The cost is random because it depends
on the type of replacement.

 Rn = k if Xn > t and Rn = k + c if Xn ≤ t. (2.6)

Now we can describe the cost for the interval (0, s].

 ∑=

)(

1
)(sN

jRsZ

This cost is a random variable, but the long-term average cost stabilizes. That is

 1

1

{ }()
{ }

→
E RZ s

s E X
as s → ∞.

The main formula for long-term average cost using replacement policy t, i.e., replace at
age t, is

∫
+

= t
dwwS

tcFktC

0
)(

)()(, (2.7)

where S(w) is the survivor function of the distribution F. The denominator of this
expression may also be computed using µ − SS(t) and µ = E{X} = SS(0). See [Barlow
and Proschan, 1981] or [Prentice and Kalbfleisch].

2c. The Likelihood Equations and Solution Technique; Structural Overview

 The structure of the likelihood function has different appearances depending upon
whether the data are complete or censored. There are a few general points that apply to
either case. These are presented first, followed by representations of how the details can
change depending upon the two cases. The parameter θ may be a vector of several
components. Let l (θ) be the likelihood function, and

 L(θ) = log[l (θ)] (2.8)

be its logarithm. We are concerned with the smooth settings in which the maximum
likelihood estimates are found using gradient methods. The partial derivative with respect
to the individual members of θ, when the particular subscript(s) plays no immediate role

 6

will be marked as Lθ; Lθθ; and
1 2,L θ θ ; the latter case representing any pair of the mixed

partial derivatives.

The partial derivative of L with respect to θ has expected value equal to zero and

the expected square of this quantity is the negative of the expected value of the second
partial of the log likelihood. The requisite smoothness conditions for interchanging the
expectation operation with the appropriate partial derivatives are presumed.

The matrix {
i j

L θ θ } is known as the Hessian and the negative of its expected
value is the (Fisher) information matrix. Call the former H, the latter nI0 (use I0 for the
information in a single observation), and Lθ the vector of partials of the log likelihood.
Often the system of equations Lθ = 0 must be solved by iterative methods. This is done
using a Newton-Raphson type technique. Two options are presented:

 (k 1) (k) 1H L+ −

θθ = θ − and (k 1) (k) 1
0(nI) L+ −

θθ = θ + . (2.9)

Termination of the iteration occurs when there is no change in the maximum value. Both
methods require a good initialization, θ(0). To some, there appears to be empirical
evidence to use the second choice, when feasible, but the calculation of I0 is often
difficult.

 Since convergence of the iteration function is sensitive to the initialization, θ(0),
the author found relief from this problem by utilizing a golden section search along the
segment (θ (k), θ (k+1)). Typically, the iteration steps over-swing the maximum in this
direction, often by a factor of two and sometimes by a factor of 10. It can pay to seek a
local maximum in this direction. The method is implemented as follows. Let

 θ1 = θ (k) ; θ4 = θ (k+1)
 θ2 = 0.618 θ 1 + 0.382 θ 4 (2.10)
 θ3 = 0.382 θ 1 + 0.618 θ 4

and compute L at these four points. If there is a single local maximum over the segment,
then it can be found by an iterative scheme:

If L(θ1) is the largest of the four, replace θ4 ← θ3 and return to (2.10)
If L(θ4) is the largest of the four, replace θ1 ← θ2 and return to (2.10).

Failing these,

 If L(θ2) is smaller than L(θ 3), then make the replacement θ1 ← θ2
 If L(θ2) is larger than L(θ 3), then make the replacement θ4 ← θ3

 and return to (2.10).

 7

Repeat the process until there is no change. Then go back to the Newton-Raphson
type scheme and continue in a new direction. This golden section augmentation will slow
when overly stringent convergence criteria are used. But is often preferable to the seeking
of a better initialization.

2d. Likelihood System; Complete Samples

 Let X1, X2, ··· , Xn be a random sample of life length random variables each having
pdf f(x; θ) and survivor function S(t; θ). Note how the parameter θ is now included in
the notation; it may be multidimensional. The likelihood function is expressed

n
ii 1

lik() [f (x ;)]
=

θ = θ∏ and n
ii 1

L log[f (x ;)]
=

= θ∑ . (2.11)

The partial derivative of L, the log likelihood, with respect to θ has expected
value equal to zero and that the expected square of this quantity is the negative of the
expected value of the second partial of the log likelihood. The requisite smoothness
conditions for interchanging the expectation operation with the requisite partial
derivatives are presumed. The subscript θ is used to denote partial derivative, and the
format aspects of the partial of the log likelihood take the appearance

 n i
i 1

i

f (x ;)L
f (x ;)
θ

θ =

θ
=

θ∑ (2.12)

and the second order partial derivatives

 n 2i i
i 1

i i

f (x ;) f (x ;)L { [] }
f (x ;) f (x ;)
θθ θ

θθ =

θ θ
= −

θ θ∑ , (2.13)

where the double subscript θθ refers to a common component of the vector θ. Any mixed
partial derivative of second order has the form

 1 2 1 2

1 2

n i i i
2j 1

i i

f (x ;) f (x ;)f (x ;)
L { }

f (x ;) f (x ;)
θ θ θ θ

θ θ =

θ θ θ
= −

θ θ∑ . (2.14)

One must develop these quantities for each specific model. Should the system of
equations for the mle’s be nonlinear, one may use the iteration schemes described above.

The negative expectation of
1 2

{L }θ θ is nI0, where I0 is the single observation
information matrix. A version of the multivariate central limit theorem says that

1
0

ˆ() (0,)n MVN Iθ θ −− ≈ . (2.15)

 8

It follows that

 2

0 ()
ˆ ˆ() () knIθ θ θ θ χ′− − ≈ , where k is the dimension of θ. (2.16)

This distributional point will be exploited in order to find joint confidence ellipses for the
parameters.

Approximate joint confidence regions for the parameters can also be obtained using

 G2 = -2[L(θ) − L(θ̂)] 2

()kχ≈ (2.17)

This too will be used for some comparisons.

2e. Bias Reduction

 Maximum likelihood estimates are known to be biased generally. It is appropriate
to reduce this bias. The technique will be presented using the notation for complete
samples. Explicit relevant formulae will be generated where the explicit models are
discussed. The use of the technique under censored sampling follow these same ultimate
formulae, but the censored case has a much more difficult likelihood function and the
development of the requisite computational formulae must await another time. It does
present a ripe area for application and study.

This section expands upon the bias reduction analysis of mle estimates that
appears in [Cox and Hinkley, p. 309]. The basic idea is to use a third order expansion of
the log likelihood about the mle. The technique deals with a single component of the
parameter vector and is expected to work best when the estimators of those components
are not strongly correlated.

 The log likelihood function L is a sum of n terms, where n is the sample size.
Consider a single parameter θ. The score of an observation is the partial derivative (of
one term) of the log likelihood with respect to θ. The score of the ith term (without
subscript as it plays no role) to that sum will be called U; the 1st and 2nd partial
derivatives will be denoted U' and U'', respectively. Use the dot subscript notation to
denote summation over the n terms. Thus,

2

2
2 3

f f f f f f fln(f)U ; U ' [] ; U '' 3 2[]
f f f f f f
θ θθ θ θθθ θθ θ θ∂

= = = − = − +
∂θ

 (2.18)

and the expansion may be expressed

 0 = 2 1/ 2
p

1ˆ ˆ ˆU.() U.() ()U.'() () U.''() O (n)
2

−θ = θ + θ − θ θ + θ − θ θ + (2.19)

 9

Taking expectations through this expression, we obtain

 21ˆ ˆ ˆE()E{U.'()} cov{ , U.'()} E() E{U.''()}
2

θ− θ θ + θ θ + θ − θ θ

 2 1/ 21 ˆcov{() , U.''()} O(n)
2

−+ θ − θ θ = . (2.20)

At this point introduce the notation, for a single observation,

 () r s

r, s () E{[U] [U '()] }κ θ = θ θ , (2.21)

and to note that

 1, 1 3, 0E{U ''()} 3 () ()θ = − κ θ − κ θ (2.22)

and E{U.''()θ is n times the above amount.

In order to justify the above expression and what follows one should keep in mind that

 0 = f f fE() E() E()
f f f
θ θθ θθθ= =

and ˆcov(, U '()) O(1/ n)θ θ = and 2ˆcov[() U ''()] o(1/ n)θ − θ θ = .

Further, ()E[U.'() n iθ = θ , where i(θ) is the information scalar (one by one matrix)

and 2ˆE() 1/ n i()θ − θ ≈ θ .

 The bias function is b(θ) =]ˆ[θθ −E . Now let’s take the expectation of (2.17).

 b(θ) ni(θ) + 1/(2 i(θ)) 1 1 3 0[3]− κ − κ = o(1/n)

and this yields the approximation

 b(θ) ≅ 1 1 3 0
2

3
2n i ()
κ + κ

θ
 (2.23)

(This is at variance with [Cox and Hinkley, p. 310, Equation (35)]).

 10

The bias reduction is executed by using)ˆ(θb . I.e., the reduced biased estimator is

 ˆ ˆ()bθ θ θ∗ = − . (2.24)

2f. Likelihood System; Censored Samples

Let X1, X2, ··· , Xn be a random sample of life length random variables having pdf

f(x;θ) and survivor function, S(t ;θ).

Type I censoring. Testing of item i will stop at ti if the item has not failed by that time.

Type II censoring. All testing stops when the rth item has failed, i.e., at X(r).

Let δi = 1 if Xi is ≤ (it’s censoring time, Type I) ti or X(r) (for Type II) (2.25)
 = 0 o.w.

The likelihood function can be expressed in a common format for the two kinds of
censoring,

i i
n 1

i ii 1
lik() [f (x ;)] S(t ;)δ −δ

=
θ = θ θ∏ (2.26)

Our first goal is to go through the formalities of showing that the partial derivative

of the log likelihood has expected value equal to zero and that the expected square of this
quantity is the negative of the expected value of the second partial of the log likelihood.
The requisite smoothness conditions for interchanging the expectation operation with the
requisite partial derivatives are presumed. Let the logarithm of the likelihood function be

 n

i i i ii 1
L() [ln(f (x ;) (1) ln(S(t ;)]

=
θ = δ θ + − δ θ∑ , (2.27)

and using the subscript θ to denote partial derivative, the format aspects of the partial of
the log likelihood take the appearance

 n i i
i ii 1

i i

f (x ;) S (t ;)L [(1)]
f (x ;) S(t ;)
θ θ

θ =

θ θ
= δ + − δ

θ θ∑ , (2.28)

and the second partial derivatives

 n 2i i
ii 1

i i

f (x ;) f (x ;)L { [] }
f (x ;) f (x ;)
θθ θ

θθ =

θ θ
= δ −

θ θ∑

 + n 2i i
ii 1

i i

S (t ;) S (t ;)(1){ [] }
S(t ;) S(t ;)
θθ θ

=

θ θ
− δ −

θ θ∑ (2.29)

 11

 1 2 1 2

1 2

n i i i
i 2j 1

i i

f (x ;) f (x ;)f (x ;)
L []

f (x ;) f (x ;)
θ θ θ θ

θ θ =

θ θ θ
= δ −

θ θ∑

 1 2 1 2n i i i
i 2j 1

i i

S (t ;) S (t ;)S (t ;)
(1)[]

S(t ;) S (t ;)
θ θ θ θ

=

θ θ θ
+ − δ −

θ θ∑ . (2.30)

The mle’s can be found by setting (2.28) equal to zero, and the Hessian can be computed
from (2.29) and (2.30).

The expected values of these quantities involve terms related to the form

 ()
t

0
f x ; dx S(t;) 1θ + θ =∫ , (2.31)

which when differentiated respect to θ, produce the useful structures

t t

0 0
f (x ;)dx S (t ;) 0; f (x ;) 0θ θ θθθ + θ = θ =∫ ∫ . (2.32)

From this we formally show that the expected value of (2.28) is zero, and for
Equation (2.29) we see that

 n n2 2i i
i ii 1 i 1

i i

f (x ;) S (t ;)E{L } E{ [] } E(1)[]
f (x ;) S(t ;)
θ θ

θθ = =

θ θ
− = δ + − δ

θ θ∑ ∑

and

 1 2 1 2

1 2

n ni i i i
i i2 2i 1 i 1

i i

f (x ;)f (x ;) S (t ;)S (t ;)
E{L L } E{ } E(1)

[f (x ;)] [S(t ;)]
θ θ θ θ

θ θ = =

θ θ θ θ
= δ + − δ

θ θ∑ ∑

and

1 2 1 2
E{L L } E{L }θ θ θ θ= − .

The maximum likelihood estimates will be the same regardless of the type of censoring.
However, the effect of censoring upon the information matrix and bias reduction
methodology does change with the type of censoring.

 12

3. Computational Studies

This section is likely the most useful to the practitioner. It shows how to use the
programs and suggests many kinds of exploratory computations and graphs. The contents
are partitioned as follows.

3a. Comparison between the Exponential and Lognormal distributions.
3b. Comparison between the Weibull and Gamma distributions.
3c. Comparison of planned replacement rules for several models.
3d. Methods for dealing with the Weibull distribution; complete samples; bias

reduction; censored samples.
3e. Methods for dealing with the Gamma distribution; complete samples; bias

reduction; censored samples.
3f. Methods for dealing with the Lognormal distribution; complete samples; bias

reduction; censored samples.

3a. Comparison of the Exponential and Lognormal Models

The exponential distribution is a favorite because of its simplicity. The lognormal

distribution also appears, being derivable from fairly plausible assumptions about certain
types of failure processes. [Breiman; Statistics, 1973, Houghton-Mifflin, p. 197] has
drawn attention to the idea that these two distributions can be adequately fitted to some
failure time data, and for small samples it is difficult to discriminate between the two. In
this example, the chi square goodness of fit statistic (D) is 6.2 with 4 degrees of freedom
for the exponential fit, estimated mean = 41.1. On the other hand, the lognormal
distribution produces a D value of 7.5, for µ = 3.3 and σ = 1.1. His point is that the chi
squared procedure has little discrimination power, even for a sample of size 50. In most
cases, the choice between the two can be resolved by comparing the two q-q plots.

Figure 3.1 makes another comparison of the two distributions, this time using
Exp(1) and Lognormal(0, 1). The density functions appear similar, but the other support
function allows one to be more discriminating as to their properties. Generally, the
lognormal hazard function has the shape of an inverted “U.” This is implausible for most
situations. In spite of this unattractive feature, it has been used in a number of diverse
situations. See [Lawless, p. 24].

Since the hazard function for the lognormal is below that of the exponential the
former has a greater survivability and a longer residual life.

 13

x

de
ns

ity
 fu

nc
tio

n

0 1 2 3

0.
0

0.
4

Compare Density functions

x

su
rv

iv
or

 fu
nc

tio
n

0 1 2 3

0.
0

0.
4

0.
8

Compare Survivor Functions

x

ha
za

rd
 fu

nc
tio

n

0 1 2 3

0.
0

0.
4

0.
8

Compare Hazard Functions

x

cu
m

 h
az

 fu
nc

tio
n

0 1 2 3
0

1
2

3

Compare Cum. Hazard Functions

x

ex
pe

ct
ed

 re
si

d.
 li

fe

0 1 2 3

0
1

2
3

4

Compare E{Residual Life} Legend

Lognormal(0, 1)
 mean = 1.65 stdev = 1.68
Exponential(1)
 mean = 1 stdev = 1

Figure 3.1

Behavior of the Lognormal Model compared with the Exponential Model.

3b. Comparison of the Weibull and Gamma Distribution Models

The Weibull distribution is a common choice for a survival distribution, as is the
gamma distribution. The former is the more popular, largely because the hazard function
follows a power law; decreasing for the shape parameter α being less than one, and
increasing for the parameter being more than one. The hazard function for the gamma
law is also DFR (decreasing failure rate) for the shape parameter smaller than one and
increasing (IFR) when it is larger than one; but for large values of the variate it
approaches an asymptote. Thus, there is a serious choice to be made between these two
laws even though their density functions are quite similar. They are both unimodal and
skewed positively. It is difficult to discriminate between the two based on complete
samples. The distinctions are in the tails. Some comparisons between the two follow.

 14

x

0 5 10 15

0.
0

0.
4

0.
8

1.
2

Compare Density functions

x

0 5 10 15

0.
0

0.
4

0.
8

Compare Survivor Functions

x

0 5 10 15

0.
0

0.
4

0.
8

1.
2

Compare Hazard Functions

x

0 5 10 15
0

1
2

3
4

5

Compare Cum. Hazard Functions

x

0 5 10 15

2.
5

3.
5

4.
5

Compare E{Residual Life} Legend

Weibull(0.75, 2)
 mean = 1.84 stdev = 2.33
Gamma(.72, .28)
 mean = 2.57 stdev = 3.03

Figure 3.2

Comparison of the Weibull and Gamma Distribution Models; DFR Case.

Figure 3.2 makes the comparison between the Weibull and gamma distributions in
a decreasing failure rate case. The Weibull (α = 0.75, β = 2) case was selected. A
random sample of size 200 was simulated and the parameters for fitting a gamma (α, λ)
distribution were estimated using maximum likelihood. The result is in the legend of
Figure 3.2. The shape parameter α is unrelated to its counterpart for the Weibull
distribution, but they share the same rule for discriminating between IFR and DFR. The
parameter λ is called the rate parameter.

Inspection of Figure 3.2 shows that it would be difficult to make the choice

between these two families without looking closely at the tails. The effect of comparing
the expected residual life functions shows the effect of a finite asymptote for the gamma
distribution.

 15

x

0 1 2 3 4 5

0.
0

0.
2

0.
4

Compare Density functions

x

0 1 2 3 4 5

0.
0

0.
4

0.
8

Compare Survivor Functions

x

0 1 2 3 4 5

0.
0

1.
0

2.
0

Compare Hazard Functions

x

0 1 2 3 4 5
0

1
2

3
4

5
6

Compare Cum. Hazard Functions

x

0 1 2 3 4 5

0.
5

1.
5

2.
5

3.
5

Compare E{Residual Life} Legend

Weibull(2, 2)
 mean = 1.77 stdev = 2.18
Gamma(3.75, 2)
 mean = 1.88 stdev = 0.97

Figure 3.3
Comparison of the Weibull and Gamma Distribution Models; IFR Case.

An IFR comparison of these two distributions is made in Figure 3.3. The Weibull

(2, 2) distribution was chosen (linear hazard function) and a reasonable convenient
matching gamma (3.75, 2) distribution was selected after some experimentation. The
story is much the same as in the previous case. The gamma hazard function has an ogive
shape and exhibits a sharper separation from the Weibull hazard function. The lower
hazard values translate in higher values for the expected residual life. Again, the effect of
the asymptote is apparent.

S-Plus codes for the creation of these graphs are in Appendix E. See the functions
exp1.lnorm(), wei1.gam(), wei2.gam().

 16

3c. Cost of Planned Replacements

 The material in Section 2b is used to continue our comparison of the Weibull and
gamma distributions.

The relative cost curves for our two cases, Weibull (2, 2) and Gamma (3.75, 2), are
superimposed for three different ratios of c/k, the additional cost c of the unplanned
replacement to the basic cost of a planned replacement. The minimum cost policies are
tabled:

Ratio, c/k 0.5 1.0 2.0
Min cost Weibull(2,2) 0.844 1.091 1.476
Min cost Gamma(3.75, 2) 0.800 1.043 1.379

The members of the paired cost curves track each other quite well. The costs are
very flat after the initial drop off. The optimum costs are less than one standard deviation
beyond the mean. The S-Plus code is cost.comp().

time in service

re
l.

co
st

0.0 0.5 1.0 1.5 2.0 2.5

0
20

40
60

ratio = 0.5

time in service

re
l.

co
st

0.0 0.5 1.0 1.5 2.0 2.5

0
20

40
60

ratio = 1

time in service

re
l.

co
st

0.0 0.5 1.0 1.5 2.0 2.5

0
20

40
60

ratio = 2

Figure 3.4
Planned replacement cost curves.

 17

3d. Weibull Distribution

Three types of computations are illustrated: estimation for complete samples; bias
reduction technique for complete samples; and estimation computations for censored
samples. The model support functions are straightforward and need not be illustrated.

Complete Samples

The ball-bearing data is employed, see Section 1. It is a complete sample of 23
failure times measured in millions of revolutions. The call

weibull.est(BallB) (3.1)

 returns shape:mle scale:mle samp size shape:mm scale:mm
 2.101808 81.87422 23 2.01545 81.50336

and the interpretation is α = shape; β = scale; mle = maximum likelihood; and
mm = method of moments. Using the mle values, the estimated information matrix is

 0

0.8676723 0.005163827ˆˆ(,)
0.005163827 0.0006590095

I α β
 

=  
 

. (3.2)

One may graph an asymptotic confidence ellipse for (α, β), using the relationship

 (2

(2)
ˆ ˆˆˆ ˆ,) (,)nIα α β β α α β β χ′− − − − ≈ (3.3)

for n sufficiently large. The function ellipse (q,m,d,n0 = 100) computes the
upper and lower portions of the confidence ellipse. The inputs are q = n 0̂I ; m is the

centering vector (ˆˆ,)α β ; d is the 100(1-α)th quantile of the chi square(2) distribution; and
n0 is the number of points to use in each quarter of the ellipse. The output is a 2n0 by 3
matrix. When one plots the superimposed graphs of each of columns 2 and 3 against
column 1, the result is the ellipse. We an also plot an approximate confidence region
based on the G2 distribution, Equation (2.17). The calling sequence is

x <- seq(1.4, 2.9, .1); y <- seq(60, 105, 1)
zz <- Gsq.wei(BallB, x, y, m[1], m[2], n) (3.4)

plot(plot.wei[,1], plot.wei[,2], type="l", xlab="shape", ylab="scale",

 xlim = c(1.4, 2.9), ylim = c(60, 105))
lines(plot.wei[,1], plot.wei[,3])
contour(x, y, zz, nlevels = 1 ,v = d, add = T, lty = 3 ,labex = 0)
title(main = "90% Confidence Regions for Weibull Parameters") (3.5)

The results are in Figure 3.5. The dashed curve is computed from the G2 distribution.

 18

shape

sc
al

e

1.5 2.0 2.5

60
70

80
90

10
0

90% Confidence Regions for Weibull Parameters

Figure 3.5

Bias Reduction

 Using (2.24), (4.16) the formulae for bias reduction becomes

 α* = 4.309165ˆ(1)
2n

α + ; β* =
ˆ1 3/ˆ (1)

ˆ2n
αβ

α
+

+ . (3.6)

And when applied to the mle’s found for the ball-bearing data, the reduced bias estimates
become

 α* = 2.2987, (mle = 2.101808)
 β* = 83.92977 (mle = 81.87422).

For a sharper comparison, let us use a Monte Carlo random sample from a
specified Weibull distribution, say Weibull(1.5, 2). Let x <- rweibull(15, 1.5, 2). The
estimation function returns

 weibull.est(x) (3.7)

 shape:mle scale:mle samp size shape:mm scale:mm
 1.807413 1.720534 15 1.707669 1.707839

 19

Use of (3.7) allows construction of the table

Parameter Actual Max. Lik. Bias Reduced
α 1.5 1.807413 2.067028
β 2.0 1.720534 1.804933

Censored Samples

Let us treat the myeloma data set, per the Introduction, 65 observations, 17 of
which are right censored; x <- myeloma[myeloma$del= =1,1] and
t <- myeloma[myeloma$del= =0,1]. Begin with the finding of initial estimating values.
Use the call1

th <- init.wei(x, t), (3.8)

which returns: th
 u b alph beta

 3.949889 1.45214 0.6886389 51.92961

then the estimation function; use the call

Newt.wei(x, t, th[1:2]), (3.9)

which returns
 u b alph beta flag
 3.492412 0.9253385 1.080686 32.86512 0

(Note: The flag starts at one and is changed to zero once the bisection search option is
invoked.) See Section 4.

3e. Gamma Distribution

Complete Samples

We use the parameterization (α, λ) where λ is the data parameter. Many prefer to
use the scale parameter, β = 1/λ. Because of this, we carry the option in the example.
Let us again use the ball-bearing data and illustrate the use of the programs. The
immediate goal is to fit the gamma distribution and estimate the Information matrix.
Model fit comparisons are made at the close of this section. Equation (5.18) is
implemented in a function gam.est(). The application upon executing

th <-gam.est(BallB) (3.10)

1 The parameters (u, b) relate to the Extreme Value distribution; the bisection search method plays a role as
well. These things are explained in Section 4.

 20

produces the return

 alpha-mle lambda-mle n alpha-mm lambda-mm
 4.024706 0.05572775 23 3.710832 0.05138171

Note the output contains both the maximum likelihood estimator and the method of
moments estimator. It follows that beta-mle = 17.94438 and beta-mm = 19.46218. The
information matrix (see (2.16)), is estimated to be

 I (ˆˆ,α λ) =
0.2819 17.94

17.94 1295.959
− 

 − 
 I (ˆˆ,α β) =

0.2819 0.0557
0.0557 0.0125

 
 
 

. (3.11)

One may graph an asymptotic confidence ellipse for, say (α, β), using the relationship

 (2

(2)
ˆ ˆˆˆ ˆ,) (,)nIα α β β α α β β χ′− − − − ≈ (3.12)

for n sufficiently large. The function ellipse(q,m,d,n0 = 100) computes the
upper and lower portions of the confidence ellipse. The inputs are q = n Î ; m is the
centering vector (ˆˆ,)α β ; d is the 100(1-α)th quantile of the chi square(2) distribution; and
n0 is the number of points to use in each quarter of the ellipse. The output is a 2n0 by 3
matrix. When one plots the superimposed graphs of each of columns 2 and 3 against
column 1, the result is the ellipse. For an example using the ball-bearing data: n = 23
and d = qchisq(0.9, 2); n0 is 100. Setting plot.dat <- ellipse(q, m, d) and then

 plot(plot.dat[,1], plot.dat[,2], type = “l”) (3.13)
 lines(plot.dat[,1], plot.dat[,3])

2 4 6
A lp h a

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

α − λ

2 4 6

A l p h a

2

7

1 2

1 7

2 2

2 7

α − β

Figure 3.6
Gamma Parameters: 90% Confidence Ellipses.

 21

The α−λ ellipse was constructed from the above code. The α−β ellipse was
constructed from the former using β = 1/λ. It is remarkably close to the ellipse that
would be based on the right-hand side of (3.12).

Bias Reduction

First, let us observe the effect of applying Equations (5.24), (5.29), and (5.34) to
the ball-bearing data. The only formal assistance is offered in terms of the S-Plus
function bias.gam(), which produces the constant C.

C <- bias.gam(th[1]) = -0.9936822 (3.14)

for use in (5.24). The results of all three bias reductions are

Ball-Bearing Data
Parameter Max. Lik Bias Reduced

α 4.02471 4.04631
λ 0.05573 0.05633
β 17.9444 17.9683

It may be more useful to test the method using a smaller sample drawn from a Gamma
population with specified parameters. Accordingly, let us use

 X <- rgamma(15, shape = 1.5, rate = 0.5). (3.15)

The results are in the table:

Parameter Actual Max. Lik Bias Reduced
α 1.5 1.2668 1.2978
λ 0.5 0.40196 0.4231
β 2.0 2.4878 2.65097

Censored Samples

Let us treat the myeloma data set (App E) 65, observations 17 of which are right
censored; x <- myeloma[myeloma$del= =1,1] and t <- myeloma[myeloma$del= =0,1].

First, we need initial estimates for input into the iteration method. The function
init.gam(x) takes the uncensored portion of the data and computes the method of
moments estimates. E.g.,

th0 <- init.gam(x) and the return is 0.98106187 0.04014575. (3.16)

Next, we use the general function Itest(x, t, th0, Newt, Llik), which will execute
the iteration method described in Section 2c. The inputs are

 22

 x the uncensored data
 t the censored data
 th0 the initial estimates
 Newt <- Newt.gam
 Llik <- Llik.gam

The entry Itest(x, t, th0, Newt.gam, Llik.gam) (3.17)

returned

α̂ = 1.06707553; β̂ = 0.03315037; number of cycles to convergence = 12.

The codes for this and support functions can be found in Appendices C and D.

3f. Lognormal Distribution

Complete Samples

Let us fit the lognormal distribution to the ball-bearing data. For complete
samples this is a very simple task. Set x <- BallB and then

µ̂ <- mean(log(x)) = 4.150383; σ̂ <- sqrt((n-1)/n)*stdev(log(x)) = 0.5216865. (3.18)

Let us also generate the 90% approximate confidence ellipse for (µ, σ), see

Equation (2.16) and compare it with other confidence regions for normal data,
specifically a region based on G2 of Equation (2.17), and an exact trapezoidal-shaped
region. These are explained in Section 6b. See Equations (6.16) and (6.17).

For the former we require the estimated information matrix

3.674352 0

ˆ ˆ(,)
0 7.348704

I µ σ
 

=  
 

, (3.19)

and then m <- c(4.150383, 0.5216865); d <- qchisq(0.9, 2); plot.dat <- ellipse(n*I, m, d).
The plotting sequence for Figure 3.7 is

plot(plot.dat[,1], plot.dat[,2], type="l", xlab="mu", ylab="sigma", ylim=c(.3,.8),
 xlim=c(3.8, 4.5))
lines(plot.dat[,1], plot.dat[,3])
contour(x, y, G2, nlevels = 1,v = d, labex = 0, lty=3, add=T)
 (see Section 6.b for the computation of G2)
trap <- NormCT(log(BallB), 0.1, graph=F)
lines(trap[1,], trap[2,])
points(xb, s)
title(main = "90% Confidence Regions for Mu and Sigma")

 23

Figure 3.7

The solid ellipse is based on (2.16). The dashed curve is based on the G2 statistic

of (2.17). The trapezoid region is an exact region based on the independence of the
sample mean and sample variance.

Bias Correction

The estimator for µ is unbiased and the estimator for σ need only be divided by
the correction factor in (6.18). For the ball-bearing data this results in

 µ∗ = 4.150383 and σ∗ = 1.034156×0.5216865 = 0.5395052 (3.20)

Censored Samples

 Use the myeloma data from Appendix E. The initializing values are taken from
the mean and standard deviation of the log of the uncensored data. Call it th0. I.e.,

th0 <-_c(mean(log(x)),sqrt((22/23)*var(log(x)))), (3.21)

which returns 4.1503827 0.5216865.

Then execute

Paramest <- Itest(x, t, th0, Newt.logn, Llik.logn) (3.22)

mu

si
gm

a

3.8 4.0 4.2 4.4

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

90% Confidence Regions for Mu and Sigma

 24

and the return is

µ̂ = 4.2533626; σ̂ = 0.5216074; number of cycles = 18.

Model Selection

 Having maximum likelihood estimates for the parameters of our competitive
models for describing the ball-bearing data, it is interesting to consider how one might
choose. In [Meeker and Escobar] the choice is an extended gamma distribution, a
distribution that is not directly treated here. It is easy to compute the
Kolmogorov-Smirnov test statistics and use them as distance functions. Meaningful
p-values cannot be computed because the distributions are fitted from data. The distances
are

ks.distance(BallB, Weibull) = 0.151
ks.distance(BallB, Gamma) = 0.123

 ks.distance(BallB, Lognorm) = 0.090

 The ball bearing set is a complete sample and we can make a graph that contains
the empirical and the fitted model distributions. For an empirical distribution we use

 ()
ˆ () /(1)jF x j n= + for j = 1, ··· , n (3.23)

and plot these discrete values against the order statistics ()jx .

BallB

p

50 100 150

0.
2

0.
4

0.
6

0.
8

* empirical cdf of BallB
fitted Weibull cdf
fitted Gamma cdf
fitted Lognormal cdf

CDF's of the Data and the Three Fitted Models

Figure 3.8

 25

4. The Weibull Distribution

 The Weibull distribution is a very popular model for reliability work, largely
because of its ease of use and of its monotone hazard function, which is increasing if the
shape parameter α is larger than one and decreasing when that parameter is smaller than
one. The parameter β is the scale parameter. The life length random variable X has a
Weibull distribution if Y = (X/β)α has an Exp(1) distribution. This relationship is
exploited broadly in what follows.

The five sections in this chapter describe formulae for: a) the model
characterization functions; b) likelihood analysis for complete samples; c) bias reduction
of maximum likelihood estimates; and d) likelihood analysis for censored samples. This
last section includes details of the use of the extreme value distribution and its role in the
estimation problems.

4a. Model Characterization Functions

The density and survivor functions are

f(x) = 1x x() exp[()]α− αα
−

β β β
 and S(t) = texp[()]α−

β
 for x,>0, t>0, (4.1)

where α > 0 is a shape parameter and β > 0 is a scale parameter. The mean and variance
are

 µ = β Γ(1 + 1/α) σ2 = β2 [Γ(1 + 2/α) − Γ2(1 + 1/α)]. (4.2)

The hazard function

 h(t) = 1t()α−α
β β

. (4.3)

The cumulative hazard function

 H(t) = ()t α

β
. (4.4)

The integrated survivor function

 SS(t) = 1/ 1 y
t()

y e dy
α

∞ α− −

β

β
α ∫ = t{ (1/) IncGam[()]αβ

Γ α −
α β

. (4.5)

The mean residual life

LL(t) = SS(t)/S(t). (4.6)

 26

4b. Likelihood Analysis for Complete Samples

Let X1, X2, ··· , Xn be a complete random sample from a parent population,
X ~ Weibull(α, β). Let l be the log likelihood of a single observation, x. The direct

analysis of this likelihood system follows. Liberal use is made of the fact that ()X Yα

β
= ~

Exp(1).

l = xln() ln() (1) ln(x) ()αα − α β + α − −
β

 (4.7)

l α = 1 x xln() ln(x) () ln()α− β + −
α β β

 = 1 [1 ln() ln()]Y Y Y
α

+ −

 (4.8)

l β = x[1 ()]αα
− +

β β
 = [1]Yα

β
− +

l α α = 2
2

1 x x[1 () ln ()]α α− +
α β β

 = 2
2

1 [1 ln ()]Y Y
α

− +

l β β = 2

x[1 (1)()]αα
− α +

β β
 = 2 [1 (1)]Yα α

β
− + (4.9)

l α β = 1 x x x[1 () () ln()]α α α− + +
β β β β

 = 1 [1 ln()]Y Y Y
β

− + +

Since 0 = E{ l α } = E{ l β}, we may deduce some interesting relationships.

 E{ X()α

β
} = E{Y} = 1 and E{ X X() ln()α

β β
} − E{ln(X)} = ()β−

α
ln1 (4.10)

Next, when we replace x with xi and sum over the data, we may write the

members of the Hessian as

 Lα α = n 2i i
2 i 1

1 x x{n () ln [()]}α α
=

− +
α β β∑

 Lβ β = n i
2 i 1

x{n (1) () }α
=

α
− α +

β β∑

 Lα β = n ni i i
i 1 i 1

1 x x x{ n () () ln[()]}α α α
= =

− + +
β β β β∑ ∑

 27

The maximum likelihood estimates are computed using an iteration function that
follows readily from the pair of equations Lα = 0 and Lβ = 0. These two equations are

easily extracted from (4.9). The latter yields the equation 1
n ∑ [()x

b
α] = 1, which, when

substituted into the former, produces

 1 1 1ln()() ln()i
i i

xx x
n n

α

α β
= −∑ ∑ . (4.11)

This in turn allows a determination of α from the left-hand side after an initial value of α
is placed into the right-hand side. The iteration proceeds when the new value so
determined is inserted into the right-hand side and the process repeated. This is often
called the natural iteration function; it need not converge in general, but in this case it
does. Its use is illustrated in Chapter 3.

The information matrix is

 I0 =
2 2

2

[1 (2) (2)] / (2) /
(2) / [/]

α β
β α β

′ + Ψ + Ψ Ψ
 

Ψ 
. (4.12)

Proof. It follows from, see Appendix A,

2X XE() ln [()]α α =
β β

E{Y ln2(Y)} = Γ''(2)

 X XE() ln[()]α α

β β
 = E{Y ln(Y)} = Γ'(2)

 Γ'(2) = Ψ(2) and Γ''(2) = Ψ' (2) + [Ψ(2)]2. �

Use of this is made in (3.3).

4c. Bias Reduction

The technique being used treats the two parameters separately.

(i) shape parameter, θ = α, so U = l α when referring to (2.18).

U =)}ln()ln(1{1 YYY −+
α

U' = 2
2

1 [1 ln ()]Y Y
α

+

 28

First,

E{U3} = 3

1
α

 {[1 + 3Γ'(1) −3 Γ'(2)] +3[Γ''(1) − 2 Γ''(2) + Γ'''(3)]

 + [Γ'''(1) −3Γ'''(2) + 3Γ'''(3) − Γ'''(4)]} and the expectation is

K3 0 = 3

1
α

{-7.921007} (see Appendix A). (4.13)

Second,

E{U U'} = 3

1 {1 (1) (2) (2) (2) (3)}
α

′ ′ ′′ ′′′ ′′′+ Γ − Γ + Γ + Γ − Γ

and the expectation is

 K1 1 = 3

1
α

{-2.136823} (see Appendix A). (4.14)

 Third, from (4.11) the information in an observation is

 i(α) = I0[1, 1] = [2 21 (2) (2)] /α′+ Ψ + Ψ = 2

1
α

{1.823681}. (4.15)

It follows from (2.20) that the bias function is

 b(α) = (4.309165)
2n
α

− . (4.16)

(ii) scale parameter, θ = β and U = l β when referring to (2.15).

U = }1Y[−
β
α

U' = 2 [1 (1)]Yα α
β

− +

K30 = E{U3} = 3233)(2}1Y3Y3Y{E)(
β
α

=−+−
β
α (4.17)

K11 = E{U U'} =
2

3 {[1][1 (1)]}E Y Yα α
β

− − + =
2

3

(1)α α
β

− + (4.18)

 29

i(β) = I0[,2, 2] = (α/β)2 (4.19)

 It follows from (2.20) that the bias function is

 b(β) = (1 3/)
2n

β α
α

−
+ . (4.20)

4d. Treatment of Censored Data; Use of the Extreme Value Distribution

The programs offered for complete samples use the Newton-Raphson iteration
scheme in two dimensions. However, if one transforms the data by the logarithm the
resulting density function is that of the extreme value distribution. The advantage of so
doing allows the elimination of one of the two parameters in the system of likelihood
equations. This technique is employed in treating the censored case.

The development of the relationship between the Weibull and Extreme Value
distributions is essentially that appearing in [Lawless]. Begin with the survivor function

 S(t; α, β) = Pr{X > t} = exp{ − (t / β)α}. (4.21)

It follows that the pdf is

 })(exp{)()(1 αα

βββ
α xxxf X −= − . (4.22)

Both parameters are positive; α is the shape parameter and β is the scale parameter.

 The pdf of the extreme value distribution has pdf

 ∞−−=
−−

foree
b

vf b
uv

b
uv

V }exp{1)(
)()(

< v < ∞. (4.23)

This distribution is related to the Weibull by the transformation

 V = log(X) X = exp(V) (4.24)

and the parametric identification

 u = log(β) β = exp(u)
 b = 1/α α = 1/b, (4.25)

from which it follows that)(log
β

α x
b

uv
=

− = log[(x/β)α].

 30

Upon finding the mle’s for the extreme value distribution and using the invariance
property of maximum likelihood estimators one can obtain maximum likelihood
estimators for the Weibull distribution. The development will not depend on whether the
censoring mechanism is of Type 1, Type 2, or any other right censoring plan.

Let X1, X2, ···, Xn be the life lengths of n items placed on test. Under Type 2
censoring, testing stops when r items have failed. Of course, if r = n, then there is no
censoring. Under Type 1 censoring each expiring has a test termination time t. The
structure of the likelihood system allows both cases to be treated with a single set of
equations. The set D contains those life lengths that were completed prior to the
termination time. The set C contains those life lengths that exceeded the allotted time The
structure of the likelihood equations is given in Equations (2.27) and (2.28). The indicator
variables δi tells us that vi = ln(xi) when equal to one, and vi = ln(ti) when equal to zero.
The development should be compared with [Lawless, eq. (4.1.1)]. The log likelihood
function has the structure

 L(u, b) = ln(()) ln(())i V iD C

f v S v+∑ ∑ , (4.26)

where f has the form (4.22) and

SV(vi) = Pr{Vi > vi} = Pr{X > ti} = exp[exp()iv u
b
−

−] (4.27)

]exp[)ln(),(ln *

b
uv

b
uvbrbulikL i

D
i −

−
−

+−== ∑∑ ,

 where * exp[] exp[] exp[]i i i
D C

v u v u v u
b b b
− − −

= +∑ ∑ ∑

 }{exp1
1

*

b
uv

bb
rL i

r

u
−

+−= ∑

)exp(11
1

*

b
uv

b
uv

bb
uv

bb
rL i

r
i

D
i

b
−−

+
−

−−= ∑∑ .

Setting the first of these two equal to zero and solving leads to the separation

 biu

b
v

r
e)]exp(1[*∑= (4.28)

and substituting into the second equation leads to the nonlinear equation in b,

 31

 h(b) = 01)exp(/)exp(** =−− ∑∑∑ D i
ii

i v
r

b
b
v

b
vv . (4.29)

This can be solved using Newton-Raphson.2 To this end, we record the derivative

 h'(b) =
/ /2 2

/ /2 2 2

[]
1

[]

i i

i i

v b v b
i i

v b v b

v e v e

b e b e

∗ ∗

∗ ∗

−
+ −∑ ∑

∑ ∑
. (4.30)

Having b one obtains u from (4.28); one converts to (α, β) using (4.26).

Equation (4.27) can provide a way to get initial estimates for the parameters; it works for
the complete case as well. Specifically, use the Kaplan-Meier estimate for the survivor
function of V, the extreme value variate. Note that

 y = ln(-ln(ˆ()S v) = (v −u)/b. (4.31)

The least square estimates of u and b can serve for initialization.

2 We have experienced lengthy oscillation using this method. Success has been achieved by using
Newton-Raphson until two consecutive values of h are of opposite signs. At this point, we switch to a
bisection search. The output contains a flag, which, if equal to zero, tells us that the bisection search was
invoked. See the function Newt.wei().

 32

5. Gamma Distribution

 The gamma distribution mimics the Weibull distribution in the central portion, but
there are major differences in the tails. The gamma distribution, for shape parameter α
more than one, has an S-shaped hazard function which, although monotone increasing,
approaches a finite asymptote. In this development, the rate parameter is λ.

5a. Model Characterization Functions

The density and survivor functions are

f(x) = 1x exp[x]
()

α
α−λ

−λ
Γ α

 and S(t) = 1−IncGam(λ t) for x,>0, t>0, (5.1)

where α > 0 is a shape parameter and λ > 0 is a rate parameter. The mean and variance
are

 µ = α/λ σ2 = α/λ2. (5.2)

The hazard function is

 h(t) = f(t) / S(t). (5.3)

The cumulative hazard function is

 H(t) = − log [S(t)]. (5.4)

The integrated survivor function is

 SS(t) = ()uSuduuS
t

=∫
∞

)(| ∞
t ∫

∞
−

t
udSu)(

 =
t

tS(t) uf (u) du
∞

− + ∫ = − t S(t) + α
u

t

u e du
(1)

α −∞

Γ α +∫

 = − t S(t, α) + α S(t, α + 1). (5.5)

The mean residual life is

LL(t) = SS(t)/S(t) (5.6)

5b. Likelihood Analysis for Complete Samples

Let X1, X2, ··· , Xn be a complete random sample from a parent population,
X ~ Gamma(α, λ). The log likelihood, scores and their partial derivatives have the forms

 33

l = α ln(λ) − ln(Γ(α) + (α−1)ln(x) − λx (5.7)

αl = ln(λ) − Ψ(α) + ln(x) (5.8)

λl = α ⁄ λ − x (5.9)

ααl = −Ψ'(α); λ λl = −α ⁄ λ2 ; α λl = 1 ⁄ λ (5.10)

But if the alternative parameterization is used, β = 1/λ, one must adjust (5.9) and (5.10)
and use

 βl = −α / β + x / β2; α βl = −1 / β2; β βl = α / β2 − 2 x / β3. (5.11)

Since 0 = E{ αl } we may deduce an interesting relationship.

 E{X − ln(X)} = ln(λ) − Ψ(α) (5.12)

It is useful to record the statistics

x = Σxi/n;)xln(= Σ ln(xi)/n; s2 = Σ(x1 – x)2/(n – 1), (5.13)

and then the log likelihood function is easily expressed as

L = n · α · ln(λ) – n · ln[Γ(α)] + (α – 1) Σ ln(xi) – λ Σ xi, (5.14)

and the two components of the gradient vector are

Lα = n [ln(λ) – Γ′(α) / Γ(α)] + Σ ln(xi) (5.15)

Lλ = n [α / λ] – Σ xi (5.16)

Setting Lλ = 0 allows the substitution of α = λ x into Lα = 0. The resulting equation
can be solved by Newton-Raphson iteration.

The Newton-Raphson algorithm requires initialization estimates. It is convenient
to use the method of moments estimators for this purpose. Thus, we solve the equations

 x = α / λ and s2 = α / λ2, (5.17)
and obtain α~ = 2x /s2 and λ

~ = x / s2.

Because of the elimination of λ, one requires only α~ for initialization into

 g(α) = ψ(α) – ln(α) −)xln(+ ln(x) = 0 (5.18)
g'(α) = ψ'(α) – 1 / α.

 34

This is managed by the gamma estimation function suite (see gam.mle(). Its use is
illustrated in 3e). The S-Plus code is in Appendix E. Asymptotic expansions for the psi
function and its derivatives are recorded in Appendix A.

The information matrix, developed in Appendix C, one for each parameterization

 () ()








−

−
= 21

1'
,

λαλ

λαψ
λαI 2

() 1/
(,)

1/ /
I

α β
α β

β α β
′Ψ 

=  
 

 (5.19)

 These developments are applied in 3e to real data. The computations include
confidence regions for the two parameterizations.

5c. Quantities Needed to Execute the Bias Reduction Method

The general formulae (2.17), (2.20), and (2.23) are developed for when dealing

with complete samples from the gamma population. The method adopted treats the
parameters individually. Accordingly, the shape parameter α is treated first, and then the
rate parameter, λ.

Case i. Shape parameter; θ = α and hence U = l α

U = ln(λ) − Ψ(α) + ln(X) (5.20)
U' = −Ψ'(α) (5.21)
i(α) = Ψ'(α) (5.22)
E{U3} = E{ln(λX) − Ψ(α)}3 = E{ln(Y) − Ψ(α)}3, where Y ~ gamma(α, 1)
 = ()ψ α′′ (5.23)

E{U' U} = 0 since U' is constant.

It follows that

2

()ˆ()
2 [()]

b
n

αα
α

′′Ψ
=

′Ψ
 (5.24)

and the bias reduced estimate is

ˆ / 2C nα α∗ = − with C = 2

ˆ()
ˆ[()]
α

α
′′Ψ
′Ψ

 (5.25)

Accordingly, the quantity C must be computed case by case. The S-Plus function
bias.gam() in Appendix C can be used to compute it.

Case ii. Rate parameter; θ = λ and hence U = l λ

 35

 U = Xα
λ

− , U' = 2

α
λ

− , i(λ) = α/λ2. (5.26)

 E{U3} = −2α/λ3 (5.27)
 E{UU'} = 0. (5.28)

It follows that

b(λ) = −
n
λ
α

 (5.29)

and the bias reduced estimate is

1ˆ(1)
ˆn

λ λ
α

∗ = + (5.30)

Case iii. (Alternate parameterization), θ = λ and hence U = l β

U = X/β2 −α/β (5.31)

U' = −(2X−αβ)/β3 (5.32)

i(β) = (α/β)2. (5.33)

Using Y = X/β leads to E{Y−α}3 = 2α and E{(Y−α)(2Y−α)} = 2α
K30 = 2α/β3; K1,1 = −2α/β3 and

 b(β) = − 2 β / nα3 (5.34)

and the bias reduced estimate is

 β* = β̂ (1+2/n 3α̂). (5.35)

5d. Treatment of Censored Samples

Equations (2.25) thru (2.27) take the following forms when sampling from a
censored gamma population.

L = r [α log(λ) − ψ(α)] + (α−1) i iD D
log(x) x− λ∑ ∑

 + iC

log[S(t)]∑ (5.36)

Lα = r [log(λ) −ψ(α)] + iD
log(x)∑ + i iC

S (t) / S(t)α∑
 (5.37)

Lλ = r α ⁄ λ − iD
x∑ + i iC

S (t) / S(t)λ∑

 36

Lα α = − r ψ'(α) + 2
i i i iC

{S (t) / S(t) [S (t) / S(t)] }αα α−∑

Lλ λ = − r α ⁄ λ2 + 2
i i i iC

{S (t) / S(t) [S (t) / S(t)] }λλ λ−∑ (5.38)

Lα λ = r ⁄ λ + 2
i i i i iC

{S (t) / S(t) S (t)S (t) /[S(t)] }αλ α λ−∑

The unresolved computational problems faced when dealing with Equations
(5.37) and (5.38) appear in those summations over the set C. They contain derivatives of
the Incomplete Gamma function and pose a major development. Our first step is to
re-express these quantities in terms of he survivor function of the standard gamma
random variable (λ = 1). Let us use the notation

 *()S t = 11
()

x

t
x e dxα

α
∞ − −

Γ ∫ . (5.39)

It is easily seen that the above partial derivatives are needed only for this standard form.
I.e.,

 *() ()S t S tλ= ; *() ()S t S tα α λ= ; *() ()S t S tα α λ= (5.40)

and the algorithms used are described in Appendix C. But, for the mixed partial
derivative and the ones with respect to λ, we develop the formulae contained in the
summary below.

Density (5.41)

f*(x) = x a-1 e –x / Γ(α) is used for the standard form, i.e., λ = 1.

f(x; α, λ) = xex λα
α

α
λ −−

Γ
1

)(
 = λ f *(λx) (or f(x) for short)

f *
x (x) = f * (x) 1[1]

x
α −

−

f α (x) = f(x) [ln(λx) − Ψ(α)]

fλ(x) = (α/λ - x) f(x)

f αλ (x) = [(α/λ - x) (ln(λx) −Ψ(α)) +1/λ] f(x).

Survivor (5.42)

 37

S(t; α, λ) =
t

f (x)dx
∞

∫ = S*(λt), where S*(t) = *

t
f (x)dx

∞

∫

 S *
α (t) = *

t
f (x)[ln(x) ()]dx

∞
− Ψ α∫

 S α (t) = S *
α (λ t)

 S ()t tλ = − f*(λ t) = t
λ

− f(t)

 S α λ (t) = − t f*(λt)[ln(λ t) − Ψ(α)] = t
λ

− f(t)[ln(λ t) − Ψ(α)].

Systems of second partial derivatives (5.43)

f α α (x) = f(x){[log(λx) − Ψ(α)]2 − Ψ'(α)}

 f α λ (x) = f(x){(α/λ −x) [log(λx) −Ψ(α)] + 1/λ}

 f λ λ (x) = f(x){[α/λ − x]2 −α/λ2}

 S αα (t) = S *

αα (λ t)

S *
αα (t) = * 2

t
f (x)[ln(x) ()] dx '()S(t)

∞
− Ψ α − Ψ α∫

 S α λ (t) = − t f * (λt)[ln(λt) − Ψ(α)]

S λ λ (t) = −t2 f*(λt)[1 1]
t

α
λ
−

−

 38

6. The Lognormal Distribution

 The lifetime X is lognormal, LN(µ, σ2) if Y = log(X) is N((µ, σ2). The model
can be derived from fairly plausible assumptions and often found suitable for
representing lifetimes, especially when large values are not of interest. Some applications
are cited in {Lawless, p. 24]. This distribution has some strange properties; e.g., its
hazard function is an inverted bathtub.

 There is great support for the normal distribution, and this support translates to the
lognormal distribution. For purposes of leveraging this support it is convenient to draw
attention to some properties.

Properties of the Normal Distribution

Use ϕ (x) for the N(0, 1) density and Φ(x) for its cumulative distribution function.
That is

ϕ (x) =
21 exp()

22
x

π
− (6.1)

for the standard normal pdf and the properties:

ϕ' (x) = − x ϕ(x); Φ(x) =
x

−∞∫ ϕ(v)dv. (6.2)

Further, the survivor function for the N(0, 1) case

 S(t) = 1 − Φ(t); (6.3)

and the integrated survivor function can be developed

SS(t; 0, 1) =
t

∞

∫ [1 − Φ(x)]dx =
t x

∞ ∞

∫ ∫ ϕ (v)dv dx =
x

∞

∫ ϕ(v)[
v

t
dx∫]dv

 = ()
x

v t
∞

−∫ ϕ (v)dv = −
t

∞

∫ ϕ'(v)dv − t
t

∞

∫ ϕ(v) dv

 = ϕ(t) − t [1 − Φ(t)]. (6.4)

The general N(µ, σ2) case can be expressed using

 f(x) = 1
σ

ϕ ()x µ
σ
− and S(t) = t µ

σ

∞

−∫ ϕ ()v dv (6.5)

 39

and the integrated survivor function is

 SS(t) = σ {ϕ ()t µ
σ
− − ()t µ

σ
− [1 − Φ ()t µ

σ
−]}. (6.6)

So much for the normal distribution. Let us turn to the lognormal distribution.

6a. Model Characterization Functions

The density and survivor functions for LN(µ, σ2) are

f(x) = 1
xσ

ϕ
log()()x µ

σ
− and S(t) = 1 − Φ(

log()t µ
σ

−
) for x, >0, t>0, (6.7)

where µ and σ > 0 take their usual interpretation. The mean and variance are

 mean(X) = 2exp[/ 2]µ σ+ var(X) = exp[2µ+σ2] [exp(σ2) − 1]. (6.8)

The hazard function, or age specific failure rate is

 h(t) = f(t)/S(t). (6.9)

The cumulative hazard function is

 H(t) = − log[S(t)]. (6.10)

The integrated survivor function is

 SS(t) = [1 − Φ log()()t µ
σ

−] {
2 / 2eµ σ+ − t}. (6.11)

The mean residual life is

LL(t) = SS(t)/S(t). (6.12)

Only the integrated survivor function is a bit intricate to understand. Let’s first treat a
related integral.

a

∞

∫ [1 − Φ(w)] eσw dw = 1
σ a

∞

∫ [1 − Φ(w)] d(eσ w)

= 1
σ

{ − eσa [1 − Φ(a)] +
a

∞

∫ eσwϕ(w)dw}

 40

and use the complete the square technique in the integral part

1
σ

{ − eσa [1 − Φ(a)] +
2 / 2eσ

a

∞

∫ ϕ(w-σ)dw}.

With this in mind, let us turn to

SS(t) =
t

∞

∫ [1 − Φ(log()v µ
σ

−)]dv = σeµ
a

∞

∫ [1 − Φ(w)] eσw dw,

where a = (log(t) − µ) ⁄σ. Now we put in the related part and complete the function in a
computable form.

SS(t) = eµ { − eσa [1 − Φ(a)] +
2 / 2eσ

a σ

∞

−∫ ϕ(w)dw}

 = [1 − Φ ()−a σ]
2 / 2eµ σ+ − t [1 − Φ(a)]. � (6.13)

6b. Complete Samples

Let X1, X2, L , Xn be a complete random sample from a parent population,
X ~ LN(µ, σ2). The relationship connecting Y = log(X) does not involve the parameters.
So, the well-known formulae for the maximum likelihood estimates of µ and σ using y1,
y2, ··· , yn, the logarithms of the data, provide the maximum likelihood estimates. The
invariance principle is invoked. Further, the information matrix will be the same.

 I0(µ, σ) =
2

2

1 0

20

σ

σ

 
  
 
 
  

 (6.14)

Note: Had we been estimating σ2 instead of σ, the lower right entry would have been
1/(2σ2).

Since the normal and log normal distributions have the same set of parameters,
then the joint confidence regions are the same. The approximate ellipses can be generated
in the same way as before; but an exact trapezoidal-shaped confidence region is also
available, and it is interesting to compare the two. The former can be found by using
(6.14) in Equation (2.16). The latter is based on the independence of the sample mean and
variance. Let

 21 ()i iY Y and SS Y Y
n

= = −∑ ∑ (6.15)

when Y1, Y2, L , Yn is a random sample from N(µ, σ2).

 41

The former is distributed according to N(µ, σ2/n) and the latter by 2 2
(1)nσ χ − . It follows

that a joint confidence region for (µ, σ) can be obtained from setting the product

 Pr{ 0 0()Xz n zµ
σ
−

− ≤ ≤ }Pr{ 2
1 2/k SS kσ≤ ≤ } = 1 − α. (6.16)

Let the first factor have probability 1−α1 and the second 1−α2. A default position might
be to use (1−α)½ for each, but it is useful to be more flexible. We choose to use a
parameter p, 0 < p < 1, such that

 1−α1 = (1−α)p and 1−α2 = (1−α)1−p.

Also, for greater flexibility, let us use a parameter q, 0 < q < 1, in the second factor so
that
 Pr{ 2

(1)nχ − < k1} = qα1 and Pr{ 2
(1)nχ − > k2} = (1 − q)α1.

This provides relief from the practice of splitting the tails evenly in the asymmetric chi
square distribution.

Each factor can be pivoted separately, i.e.,

 Pr{ 0 / /X z n X nσ µ σ− ≤ ≤ + }Pr{ 2 1/ /SS k SS kσ≤ ≤ }. (6.17)

The confidence region is the intersection of the two events. The range of values for σ in
the second factor is used in the interval limits of the first factor. This capability is
programmed into the function NormCI(x, alph, p, q, graph = T), a
plotting function that accepts the data x and α, where 1 − α is the confidence level. If
graph = F, then the graph is not drawn and the return is the set of vertices of the
trapezoid. The function contains defaults p = ½, q = ½.

6c. Bias Reduction

 The estimators for µ is unbiased, but not so for the estimator for σ. In this latter
case, we can use an exact correction based on the expectation the maximum likelihood
estimator for σ, i.e.,

 E{s} = 2 (/ 2)
((1) / 2)

n
n n

σ Γ
Γ −

 (6.18)

and the exact bias adjustment is obtained from (6.18).

Note 1: [Barndorff-Nielsen and Cox, 1994, p. 187] post the reciprocal of the third factor
in (6.18).

 42

Note 2: If one is using the unbiased estimator for σ2, then the factor √2/n should be
replaced with √2/(n-1).

6d. Censored Samples

We require partial derivatives of f and S, (6.7) for use in (2.28), (2.29), and (2.30).

The are recorded here. Begin with those of the first order, using ln()xz µ
σ

−
= and

ln()tw µ
σ

−
=

 2

1()f x
xµ σ
−

= ϕ' 2

ln() 1()x z
x

µ
σ σ

−
= ϕ ()z = z f(x)/σ

 2

1()f x
xσ σ

= ϕ 2(){ 1}z z − = (z2-1) f(x)/σ

Sµ(t) = 1
σ

ϕ ()w

Sσ(t) = w
σ

ϕ ()w

and those of the second order,

 3

1()f x
xµ µ σ

= ϕ(2)(1)z z − = (z2-1) f(x)/σ2

 3

2()f x
xσ σ σ

= ϕ 2 3(){1 3 }z z z z− − + = 2 f(x)[1 − z − 3z2 + z3]/σ2

 3

1()f x
xµσ σ

= ϕ 2(){ (3)}z z z − = z(z2 − 3) f(x)/σ2

 Sµ µ = 2

w
σ

ϕ ()w

 Sσ σ = 2
2

1 (2)w w
σ

− ϕ(w)

 Sµ σ = 2
2

1 (1)w
σ

− ϕ ()w .

The program for estimating µ and σ is Itest(). Its use is illustrated in Section 3.

 43

7. Summary and Conclusions

 The paper offers great flexibility to those practitioners and students who wish to
make exploratory computations and learn the behavior of models. Those possessing a
modicum of programming capability can expand the choices given here to other models
and situations as the structure offers a template that facilitates additional expansion.
Much remains to be learned. What follows is a listing of what has been learned thus far.
We comment on the items as presented in Section 3.

 Survival distribution selection must be based on careful modeling and good
judgment. This area of statistical work has the disadvantage that the collection of large
quantities of data requires time, often unacceptable amounts of time. Yet the comparisons
of models using somewhat small data sets does not allow one to examine the tail
behavior. The sole use of histograms and q-q plots does not suffice. The graphing of the
other support functions, especially the hazard function and mean residual life, can aid the
practitioner in modeling and the making of choices. Such is illustrated in Sections 3a and
3b.

 The graphing of the behavior of planned replacement policies can be quite useful
to those involved in the generation of maintenance policies. The problem treated in 3c
deals solely with the relative costs of planned versus random replacements. The most
interesting point is the flat behavior of the cost curves once the original high costs fall
away. This is useful to the maintenance planner because the replacement model is
generically a very simple one, one that does not consider the costs of arranging to make
the replacements at the optimal point in time. Such costs are likely to be high and it is
comforting to know that the optimal point is contained in a very broad window. One need
not give ground to the problems of performing maintenance at inconvenient times.

 Sections 3d, 3c, and 3f illustrate the implementation of the general materials
presented in Section 2 for the Weibull, Gamma, and Lognormal distributions,
respectively.

There are four areas of specialization for each:

Computation of the support functions.
Maximum likelihood parameter estimation for complete samples.
Implementation of bias reduction techniques.
Maximum likelihood estimation for right censored samples.

Summary of each is made in turn.

 Most software systems provide the capability to compute density, cumulative
distribution, and quantile functions. The extension of such capabilities to the set of
survival distribution support functions has yet to occur. The three cases presented here
provide illustration as to what must be done.

 44

 Maximum likelihood estimation for complete samples is popular and well
understood, yet they are hard to compute. The algorithms presented here have high
precision. The statistics texts do not provide much in the way of support for joint
confidence regions for multi-parameter models. The author believes them to be useful.
They bear witness to Bellman’s “curse of dimensionality.” It is quite remarkable how
large these regions are for samples of size 50 and 100.

 Maximum likelihood estimators have long been known to be biased, but there
appears little available commentary on the importance of this bias. The issue has not
received conspicuous attention. The method implemented here was taken from [Cox and
Hinkley]; it is a first order approximation based on the marginal distribution of the
individual parameters. The limited computational results presented are not very
interesting; but the stage is set for a broadly based Monte Carlo simulation study geared
to learn the behavior of the method. At present, it appears that it may be useful only for
rather small sample sizes.

 Methods for managing censored data may be available in the Splida and Reliasoft
systems. But these are opaque. The open methods that appear here are limited, but offer a
beginning. The functions Itest() and Golden() are generic. In concept, they may be
applied with any right-censored data set modeled with any distribution that is smooth in
its parameters, and any finite dimension of the parameter space. However, they have not
been broadly tested. In fact, their use was not competitive with the bisection search
method devised for the Weibull distribution. See Section 4.

 The idea of alternating the application of Newton-Raphson iteration with a golden
section search may be new. It should be useful whenever the log likelihood is a concave
function of the parameters. It appears to converge in a reasonably short amount of time,
in spite of its low dependence upon the quality of the initializing point.

 The computation of derivatives of the incomplete gamma function came up in the
treatment of the gamma distribution for censored samples. A method of high precision
was developed and appears in Appendix D. It is suitable for parallel processing. Mostly
the values are precise to at least nine decimal places.

 The computation of the information matrix and the bias reduction term is quite
difficult for censored samples. Indeed the calculation depends upon the type of censoring.
Much depends on the information matrix. Also, there is dependence on the ratio of the
number of uncensored sample to the total sample size. The quality of the estimation
results will deteriorate as the number of uncensored observations becomes small.

 45

Locations of S-Plus Listings in the Appendices

Appendix A. psi(), psi.bas(), g1(), g2(), g3(), g4()

Appendix B. weibull.mle(), weibull.mm(), weibull.mle(), weibull.est(), Newt.wei(),

 Init.wei(), KapM(), convtowei()

Appendix C. Itest(), Golden(), init.gam(), Llik.gam(), Newt.gam(), Lp.gam(),
 Llik.logn(), Newt.logn(), Lp.logn()

Appendix D. Surv.gam(), surv.gam(), surva.gam(), survaa.gam(), trans1(), trans2(),
 trans3()

Appendix E. gam.est(), ellipse(), exp1.lnorm(), wei1.gam(), wei2.gam(), wei.cost(),
 NormCT(), area.comp(), seg.comp(), sol.pt(), Newt.wei(), exp.lnorm(),
 Ext.newt(), cost.comp(), Gsq.norm(), Gsq.gam(), Gsq.wei()

 46

Appendix A

Asymptotic Expansions for the Polygamma Functions

The Psi function is defined as the derivative of the log gamma function. The
recursion formula for the Gamma function translates into a like formula for the Psi
function. Thus,

 ψ(z) = d(ln(Γ(z))/dz and ψ(z+1) = ψ(z) + 1/z. (A.1)

Asymptotic expansions are especially advantageous because high precision is available
using few terms, provided z is large. This can be easily exploited in computations
involving the Polygamma functions. Thus, if z + r is sufficiently large to obtain
appropriate accuracy, then use

 ψ(z) = ψ(z + r) – 1/z – 1/(z + 1) – … – 1/(z + r – 1) (A.2)

 ψ′(z) = ψ′(z + r) + 1/z2 + 1/(z + 1)2 + … + 1/(z + r – 1)2 (A.3)

and so on. It remains to record the expansions for large z, [Abramowitz and Stegun]

 ψ(z) = ln(z) – 1/2z – 1/ 12z2 + 1/120z4 – 1/252z6 + … (A.4)

 ψ′(z) = 1/z + 1/2z2 + 1/6z3 – 1/30z5 + 1/42z7 – 1/30z9 + … (A.5)

 ψ′′(z) = −1[1/z2 + 1/z3 + 1/2z4 − 1/6z6 + 1/6z8 − 3/10z10 +]

 ψ′′′(z) = 2/z3 + 3/z4 + 2/z5 − 1/z7 + 4/3z9 − 3/z11 +

 ψ(n)(z) = (–1)n+1 [(n–1)!/zn + n!/2zn+1 + ΣB2k (2k + n – 1)!/(2k)!z2k+n](A.6)

and {B2k} are the Bernoulli numbers. See [Abramowicz and Stegun].

 The error in these expansions is sized by the first term ignored. They work best
for z large, say z > 10. For smaller values of z one should make adjustments based on the
recursive formula for the gamma function.

() () ()() ()

() ()

() ()z
jz

1az

z
jz

1az

zz1z1azaz

1a

0

2

1a

0

Ψ′+∑ 







+

−=+Ψ′

Ψ+∑
+

=+Ψ

Γ+−+=+Γ

−

−

L

 (A.7)

 47

 ψ′′(z+a) =
a 1

3

0

12 ()
z j

−

+∑

 ψ′′′(z+a) =
a 1

4

0

16 ()
z j

−

−
+∑ .

For these reasons, two programs have been written: psi.bas (z) takes a vector
argument z and returns three rows of output, the function and its first two derivatives. For
small values of z, one can choose an integer a and call psi (z,a) to achieve precision based
on (A.7). The default value of a is 10. Adjustments are made for all components of z less
than a.

On occasion we require the derivatives of the gamma function. These are
obtainable from the psi function and its derivatives. The first four are as follows.

 Γ'(z) = Γ(z) ψ(z)
 Γ''(z) = Γ(z){ ψ'(z) + ψ2(z) }
 Γ'''(z) = Γ(z){ψ''(z) + 3ψ'(z)ψ(z) + ψ3(z)} (A.8)
 Γiv(z) = Γ(z){ψ'''(z) + 4ψ''(z)ψ(z) + 6ψ'(z)ψ2(z) + 3[ψ'(z)]2 + ψ4(z)}.

Useful relationships

 1 ()

0
ln () ()r s x sx x e dx r

∞ − − = Γ∫ and (1) () ()
1

() () ()rr j r j
j

r
v v v

j
+ −

=

 
Γ = Γ Ψ 

 
∑

 1

1

1() (1) n

k
n

k
−

=
Ψ = Ψ +∑ ; 1

21

1() (1) n

k
n

k
−

=
′ ′Ψ = Ψ −∑ ; 1

31

1() (1) 2 n

k
n

k
−

=
′′ ′′Ψ = Ψ + ∑ .

S-Plus Codes

psi
function(z, a = 10){
fname is psi; programmer; R. Read
derivative log gamma and two subsequent derivatives
Uses recursive formula for min(z) < a and the
psi.bas function for large z (asymptotic expansion)
 a <- floor(a)
 s <- a - floor(min(z))
 j <- 1:s
 if(s > 0) {
 temp0 <- apply(1/outer(z - 1, j, "+"), 1, sum)
 temp1 <- apply(1/outer(z - 1, j, "+")^2, 1, sum)
 temp2 <- apply(1/outer(z - 1, j, "+")^3, 1, sum) }
 else {
 temp0 <- temp1 <- temp2 <- 0}
 if(s <= 0)
 s <- 0

 48

 out <- psi.bas(z + s)
 out[1,] <- out[1,] - temp0
 out[2,] <- out[2,] + temp1
 out[3,] <- out[3,] - 2 * temp2
 out}

psi.bas
function(z){
fname is psi.bas; programmer: R. Read
asymptotic expansion for first three derivatives
of the log gamma function; z may be a vector.
 K <- length(z)
 coef0 <- c(-2, -12, 120, -252)
 m0 <- matrix(rep(coef0, rep(K, 4)), ncol = 4)
 z0 <- c(z, z^2, z^4, z^6)
 coef1 <- c(1, 2, 6, -30, 42, -30)
 m1 <- matrix(rep(coef1, rep(K, 6)), ncol = 6)
 z1 <- c(z, z^2, z^3, z^5, z^7, z^9)
 coef2 <- c(-1, -1, -2, 6, -6)
 m2 <- matrix(rep(coef2, rep(K, 5)), ncol = 5)
 z2 <- c(z^2, z^3, z^4, z^6, z^8)
 out <- log(z) + apply(1/(m0 * z0), 1, sum)
 out <- rbind(out, apply(1/(m1 * z1), 1, sum))
 out <- rbind(out, apply(1/(m2 * z2), 1, sum))
 out}

g1
function(z){
fname is g1
first derivative of the gamma function
 out <- gamma(z) * psi(z)[1,]
 return(out)}

g2
function(z){
fname is g2
second derivative of the gamma function
 tmp <- psi(z)
 out <- gamma(z) * (tmp[2,] + tmp[1,]^2)
 return(out)}

g3
function(z){
fname is g3
third derivative of the gamma function
 tmp <- psi(z)

 49

 out <- gamma(z) * (tmp[3,] + 3 * tmp[2,] * tmp[1,] + tmp[1,]^3)
 return(out)}

g4
function(z){
fname is g4
fourth derivative of the gamma function
 tmp <- psi(z)
 out <- gamma(z) * (tmp[4,] + 4 * tmp[3,] * tmp[1,]

 + 6 * tmp[2,] * tmp[1,]^2 + 4 * tmp[2,]^2 + tmp[1,]^4)
 return(out)}

 50

Appendix B

Analysis for Computational Support of the Weibull Distribution

This appendix contains the numerical analysis and S-Plus code for executing the
support functions developed in Chapter 4. Fundamental support functions for the Weibull
distribution are primitives in the S-Plus system. Capabilities for computing the psi and
gamma functions and their derivatives are contained in Appendix A. The fact that
Y = (X/β)α has an Exp(1) distribution when X ~ Weibull(α, β) has been exploited and
the properties of the Exponential distributions are familiar.

It remains to describe the computational techniques used to compute maximum
likelihood estimates for the shape and scale parameters (α, β) under complete and
censored sampling.

Complete Samples

 The maximum likelihood estimates are computed using the natural iteration
function described in Chapter 4. The method of moments estimates are used for
initialization. The Newton-Raphson Iteration (B.1) is used to find these latter estimates.
The functions utilized are

 weibull.mle(); weibull.mm(); weibull.est();

the last of these functions calls the previous two and displays both kinds of estimates.

Their use is illustrated in Section 3 and the S-plus listings appear in the S-Plus section of
this appendix.

Right-Censored Samples

 The formulae in Section 4d require computational development. The transform
the extreme value distribution enables one to execute a one-dimensional search for the
parameter b, see (4.24) and (4.28). However, it appears that the Newton-Raphson scheme
undergoes considerable oscillation when applied in this setting and some modifications
are in order. The basic idea is to use Newton-Raphson until the function h of (4.28)
oscillates and then switch to a bisection search.

 A little more detail can be useful. The basic iteration is to use

 bn+1 = bn − h(bn) / h'(bn) (B.1)

and record the two most recent pairs, call them (b1, h1) and (b2, h2). At each step check
the sign of the product h1×h2; when it turns negative, change to the bisection search. I.e.,

 51

set b = (b1 + b2)/2; compute h(b);
if h×h1 < 0 set h2 = h and b2 = b; otherwise set h1 = h and b1 = b; (B.2)
repeat until no change in b, or h ≈0, or both.

The S-Plus function that does this is called Newt.wei().

 The initialization exploits Equation (4.30). There we have a straight-line
relationship between v and y, which can be expressed using a least squares fit. Then set
b = 1/slope and u = x-intercept. The conversion of {vi} to {yi} is accomplished using
the Kaplan-Meier estimator for the survivor function. It was decided to write a simple
code to accomplish this.

 The basic Kaplan-Meier estimation has the following rules. Pool and order the
uncensored and censored times, call them { }ix∗ . Let di be the number that died at ix∗ , i.e.,
exclusive of those that were censored at that value. Set n0 = n and ni = ni-1 – di for all of
the unique values of { }ix∗ . These are the number at risk values. Then the estimated
survivor function is, at the data points,

 S(ix∗) = j j
j i

j

n d
n<

−
∏ . (B.3)

These details are executed by the functions init.wei() and KapM(); listings below.

S-Plus Codes

weibull.mle
function(x, a0 = 1, ep = 0.0001){
fname is weibull.mle
natural iteration function; a0 is initial shape parameter
output is the pair (shape, scale)
 lxb <- mean(log(x))
 a <- a0
 repeat {
 ainv <- mean(log(x) * x^a)/mean(x^a) - lxb
 a <- 1/ainv
 if(abs(a - a0) < ep)
 break
 a0 <- a
 }
 b <- (mean(x^a))^(1/a)
 out <- c(a, b)
 out}

weibull.mm
function(x, a0 = 1, ep = 0.0001){

 52

fname is weibull.mm
returns the method of moments estimator for the shape (a) and scale (b)
parameters of the weibull distribution. The initialization is a0. The data are x.
 xb <- mean(x)
 s2 <- var(x)
 a <- a0
 repeat {
 g <- lgamma(1 + 2/a) - 2 * lgamma(1 + 1/a) - log(1 + s2/xb^2)
 gp <- (psi(1 + 2/a)[1] - psi(1 + 1/a)[1]) * (-2/a^2)
 a <- a0 - g/gp
 if(a < 0)
 a <- 0.1
 if(abs(a - a0) < ep)
 break
 a0 <- a }
 b <- xb/gamma(1 + 1/a)
 out <- c(a, b)
 out}

weibull.mle
function(x, a0 = 1, ep = 0.0001)
{# fname is weibull.mle
natural iteration function; a0 is initial shape parameter
output is the pair (shape, scale)
 lxb <- mean(log(x))
 a <- a0
 repeat {
 ainv <- mean(log(x) * x^a)/mean(x^a) - lxb
 a <- 1/ainv
 if(abs(a - a0) < ep)
 break
 a0 <- a }
 b <- (mean(x^a))^(1/a)
 out <- c(a, b)
 out}

weibull.est
function(x){
fname is weibull.est
Input is a random sample from the Weibull distribution.
Output has five components: shape and scale parameter estimates
using max likelihood, sample size, shape and scale parameter
estimates using method of moments
 n <- length(x)
 mm <- weibull.mm(x)
 ml <- weibull.mle(x)

 53

 out <- c(ml, n, mm)
 names(out) <- c("shape:mle", "scale:mle", "samp size", "shape:mm", "scale:mm")
 out}

Newt.wei
function(x, t, param, ep = 0.0001){
fname is Newt.wei
Newton-Raphson method, then bisection search used to find mle
for the Weibull distribution using the extreme value distribution technique.
Data input is (x, t); param initialization is (u, b), b>0
output is (u, b, alph, beta). r is cardinality of uncensored set
 r <- length(x)
 v <- log(x)
 vb <- mean(v)
 lt <- log(t)
 b <- param[2]
 u <- param[1]
 vv <- c(v, lt)
 b2 <- b1 <- b
 h1 <- h2 <- 0
 j <- 1
 flag <- 1
 repeat {
 if(flag == 1) {
 D <- sum(exp(vv/b))
 N <- sum(vv^2 * exp(vv/b))
 A <- sum(vv * exp(vv/b))
 h <- A/D - b - vb
 hp <- - N/(D * b^2) + A^2/(D * b)^2 - 1
 b <- b1 - h/hp
 if(b <= 0)
 b <- 0.01
 if(max(abs(h), abs(b - b1)) < ep)
 break
 if(j/2 != round(j/2)) {
 b1 <- b
 h1 <- h }
 if(j/2 == round(j/2)) {
 b2 <- b
 h2 <- h }
 j <- j + 1
 if(sign(h2 * h1) < 0)
 flag <- 0}
 if(j == 25)
 break
 if(flag == 0) {

 54

 b <- (b1 + b2)/2
 D <- sum(exp(vv/b))
 A <- sum(vv * exp(vv/b))
 h <- A/D - b - vb
 if(sign(h * h1 < 0)) {
 h2 <- h
 b2 <- b }
 if(sign(h * h2 < 0)) {
 h1 <- h
 b1 <- b }
 if(max(abs(h), abs(b - b1)) < ep)
 break
 j <- j + 1
 if(j == 50)
 break} }
 u <- b * log(D/r)
 alph <- 1/b
 beta <- exp(u)
 out <- c(u, b, alph, beta, flag)
 names(out) <- c("u","b",”alph","beta","flag")
 return(out)}

init.wei
function(x, t){
fname is init.wei
provides initial estimates for the extreme value distribution
i.e., y = log(weibull), parameters (u, b). The pair (x, t)
represents n observations (duplicate values required) where
the 't' values are the censoring values. Output is a four vector;
first two are (u, b) and the last two are (alpha, beta).
lsfit to the log survival fnc technique is utilized.
 S <- KapM(x, t)
 w <- log(- log(S))
 y <- sort(log(c(x, t)))
 yy <- unique(y)
 yb <- mean(yy) # w <- lsfit(yy, S)$coef
 slope <- sum(w * (yy - yb))/sum((yy - yb)^2)
 interc <- mean(w) - slope * yb
 b <- 1/slope
 u <- - b * interc
 alph <- slope
 beta <- exp(u)
 names(out) <- c("u", "b", "alph", "beta")
 out <- c(u, b, alph, beta)
 return(out)}
KapM

 55

function(x, t){
fname is KapM
produces the Kaplan-Meier estimate of the survivor function for
data c(x, t) where x are the actual death times and t are the
censored values.
 y <- sort(c(x, t))
 yy <- unique(y)
 dd <- d <- tab <- table(y) # number of deaths at y
 n <- length(y)
 k <- length(yy)
 nr <- n - tab # initial number at risk
 tt <- unique(t)
 ind <- (1:k)[tt == yy]
 tabt <- table(tt)
 kk <- length(ind)
 if(kk > 0) {
 for(j in 1:kk)
 dd[ind[j]] <- d[ind[j]] - tabt[j] }
 SS <- (nr - dd)/nr
 S <- cumprod(SS)
 return(S)}

 56

Appendix C

Implementation of the General Censored Data Estimation Scheme

The iterative estimation scheme described in Section 2 has been implemented for
two out of three distributions, namely the gamma and lognormal distributions. The case
of the Weibull distribution can be managed more directly as described in Section 4 and
Appendix B.

Much of the structure can be treated generally. Because S-Plus functions have the
capability to accept other functions as input, it is possible to write generic code for the
process. Such is exploited for the values of the log likelihood, the golden section search,
and the change of gradient direction effected by a single iteration of the Newton-Raphson
scheme. The name Itest is short for iterative estimation.

The basic call is

 Paramest <- Itest(x, t, th0, Newt, Llik, ep = .0001),

where x is the set of uncensored survival times; t is the set of right-censored times
realized; th0 is the initialization point in the parameter space; Newt is a generic function
that produces an updated value for the parameter; and Llik is a generic function that
computes the log likelihood for the targeted distribution family. The value of ep is used to
control the precision of the estimate. Of course, the inputs to Newt and Llik must be
generated by the parent function.

The function also calls a golden section search function. Its role is to seek the best
value for th along the line segment connecting th previous and the output of Newt.
Having made that selection, the parent program calls Newt to find a new direction for
search. The output has the structure

 Paramest = th[1], th[2], N.iter,

where N.iter is the number of cycles through Newt.

S-Plus Codes

Itest
function(x, t, th0, Newt, Llik, ep = 0.0001, N.iter = 50)
{# fname is Itest
alternates the use of golden section and Newton-Raphson
to find 2-D mle's. The input N.iter puts a cap on the
number of iterations of Newton-Raphson.
 recth <- NULL
 k <- 1
 repeat {if(k == 50) break

 57

 th1 <- Newt(x, t, th0)
 if(max(abs(th0 - th1)) < ep)
 break
 recth <- rbind(recth, c(th0, th1))
 k <- k + 1
 th0 <- Golden(x, t, th0, th1, Llik)[[1]]}
 out <- c(recth[k - 1, 3:4], round(k))
 if(k == N.iter)
 out <- c("No convergence")
 return(out)}

Golden
function(x, t, th0, th1, Llik, ep1 = 0.5)
{# fname is Golden
performs the golden section search along the direction
th0 to th1. The function returns the value of th that
maximizes Llik in that direction. The return is the
new th and its (proportional) distance from th0.
This function is called by Itest, from which it gets ep
 p1 <- c(0.618, 0.382)
 p2 <- rev(p1) #thinit <- cbind(th0, th1)
 t0 <- th0
 len0 <- sqrt(sum((th1 - th0)^2))
 j <- 1
 repeat {j <- j + 1
 th4 <- p1 * th0 + p2 * th1
 th6 <- p2 * th0 + p1 * th1
 th <- cbind(th0, th4, th6, th1)
 L <- Llik(x, t, th)
 if(j > 5) {
 ep2 <- (max(L) - min(L))/20
 ep2 <- max(ep2, ep)
 ep1 <- min(ep1, ep2)}
 if(j == 100)
 break
 rnk <- rank(L) # print(L)
 if(rnk[3] == 4)
 th0 <- th4
 if(rnk[2] == 4)
 th1 <- th6
 if(rnk[4] == 4)
 th0 <- th4
 if(rnk[1] == 4)
 th1 <- th6
 if(max(abs(th0 - th1)) < ep1) break # print(c(th0, th1))}
 len1 <- sqrt(sum((th1 - t0)^2))

 58

 out <- list(th = th1, prop = len1/len0)
 if(j == 100) {
 out <- c("Too many Golden iterations")}
 return(out)}

Input functions when using the Gamma distribution.

Begin with the computation of the initializing point.

init.gam
function(x)
{# fname is init.gam
initializes the estimates using the method of moments applied to
the uncensored part of the data
x <- dat[dat[, 2] == 1, 1]
 xb <- mean(x)
 s2 <- var(x)
 lam <- xb/s2
 alph <- lam * xb
 out <- c(alph, lam)
 out}

Llik.gam
function(x, t, th)
{# fname is Llik.gam
computes the log likelihood for censored gamma data
x in the uncensored life lengths, t is the censored set
th is a matrix of parameter values;
first row is alph, second is lam
 if(length(th) == 2) th <- matrix(th, 2, 1)
 k <- ncol(th)
 r <- length(x)
 lg <- lgamma(th[1,])
 lx <- sum(log(x))
 sx <- sum(x)
 L <- rep(0, k)
 for(i in 1:k) {
 S <- 1 - pgamma(th[2, i] * t, th[1, i], 1)
 L[i] <- r * (th[1, i] * log(th[2, i]) - r * lg[i]) +

(th[1, i] * -1) * lx - th[2, i] * sx + sum(log(S))}
 return(L)}

Newt.gam
function(x, t, th)
{# fname is Newt.gam
program executes a single iterative update of th (theta)

 59

for the mle estimation of th (alph, lam) for censored gamma
distribution data; x is the set of observed life times and t
the set of censored (right) times.
 alph <- th[1]
 lam <- th[2]
 ps <- psi(alph)
 r <- length(x)
 S <- Surv.gam(alph, lam * t, 20, ep = 1e-005)
 La <- r * (log(lam) - ps[1]) + sum(log(x)) + sum(S[2,]/S[1,])
 f <- dgamma(lam * t, alph, 1)
 Slam <- - t * f
 Ll <- (r * alph)/lam - sum(x) + sum(Slam/S[1,])
 Laa <- - r * ps[2] + sum(S[3,]/S[1,] - (S[2,]/S[1,])^2)
 Salphlam <- - t * f * (log(lam * t) - ps[1])
 Slamlam <- - t^2 * f * ((alph - 1)/(lam * t) - 1)
 Lal <- r/lam + sum(Salphlam/S[1,] - (S[2,] * Slam)/S[1]^2)
 Lll <- (- r * alph)/lam^2 + sum(Slamlam/S[1,] - (Slam/S[1,])^2)
 Lt <- c(La, Ll)
 H <- matrix(c(Laa, Lal, Lal, Lll), 2, 2)
 th0 <- th
 th <- th0 - solve(H, Lt) # print(th)
 if(th[1] < 0)
 th[1] <- 0.01
 if(th[2] < 0)
 th[2] <- 0.01
 dist <- max(abs(th - th0)) # print(dist)
 return(th)}

The function Surv.gam() is described in Appendix D.

Lp.gam
function(x, t, th0)
{# fname is Lp.gam
creates the gradient vector Lp and the Hessian matrix H
for the censored gamma family sampling
 alph <- th[1]
 lam <- th[2]
 S <- Surv.gam(alph, lam * t, a0 = 20)
 xm1 <- (log(lam * x) - psi(alph)[1,])/lam
 xm2 <- alph/lam - x
 tm1 <- (S[2,] - psi(alph)[1,])/S[1,]
 tm2 <- (- t * dgamma(lam * t, alph))/S[1,]
 Lp1 <- sum(xm1) + sum(tm1)
 Lp2 <- sum(xm2) + sum(tm2)
 H11 <- sum(xm1^2) + sum(tm1^2)
 H22 <- sum(xm2^2) + sum(tm2^2)

 60

 H12 <- sum(xm1 * xm2) + sum(tm1 * tm2)
 out <- list(Lp = c(Lp1, Lp2), H = matrix(c(H11, H12, H12, H22), 2, 2))
 out}

Input functions when using the Lognormal distribution.

Initialize with mean(log(x)) and stdev(log(x))

Llik.logn
function(x, t, th)
{# fname is Llik.logn
Computes the log likelihood for censored log normal data
x is the set of uncensored life lengths, t is the censored set.
th is the matrix of parameter values; first row is mu,
second is sigma. The output is a set of log likelihood values.
 if(length(th) == 2) th <- matrix(th, 2, 1)
 k <- ncol(th)
 r <- length(x)
 d <- length(t)
 z1 <- outer(log(x), th[1,], "-")/th[2,]
 z2 <- outer(x, th[2,], "*")
 cc <- log(2 * pi)
 L1 <- apply(- log(z2) - 0.5 * cc - 0.5 * z1, 2, sum)
 w <- outer(log(t), th[1,], "-")/th[2,]
 Sn <- matrix(1 - pnorm(w), d, k)
 L2 <- apply(log(Sn), 2, sum)
 L <- L1 + L2
 return(L)}

Newt.logn
function(x, t, th)
{# fname is Newt.logn
program executes a single iterative update of th (theta)
for the mle estimation of th (mu, sig) for censored lognormal
distribution data; x is the set of observed life times and t
the set of (right) censored times.
 mu <- th[1]
 sig <- th[2]
 out <- Lp.logn(x, t, th)
 Lt <- out[[1]]
 H <- out[[2]]
 th0 <- th
 th <- th0 - solve(H, Lt) # print(th)
 if(th[2] < 0)
 th[2] <- 0.01
 dist <- max(abs(th - th0)) # print(dist)
 return(th)}

 61

Lp.logn
function(x, t, th0)
{# fname is Lp.logn
Creates the gradient vector Lp and the Hessian matrix H
for the censored lognormal family sampling.
The output is a list; Lp and H
 mu <- th0[1]
 sig <- th0[2]
 z <- (log(x) - mu)/sig
 w <- (log(t) - mu)/sig
 fw <- dnorm(w)
 Sw <- 1 - pnorm(w)
 Lp1 <- sum(z) + sum(fw/(sig * Sw))
 Lp2 <- sum((z^2 - 1)/sig) + sum((w * fw)/(sig * Sw))
 H11 <- sum((z^2 - 1)/sig^2 - z^2) + sum((w * fw)/(sig^2 * Sw))
 H11 <- H11 - sum(fw/(sig * Sw)^2)
 H12 <- sum((z * (z^2 - 3))/sig^2 - (z * (z^2 - 1))/sig)
 H12 <- H12 - sum(((w^2 - 1) * fw)/(sig^2 * Sw))
 H22 <- sum(2 * (1 - z - 3 * z^2 + z^3) - ((z^2 - 1)/sig)^2)
 H22 <- H22 + sum((w * (w^2 - 2) * fw)/(sig^2 * Sw) - ((w * fw)/(sig * Sw))^2)
 out <- list(Lp = c(Lp1, Lp2), H = matrix(c(H11, H12, H12, H22), 2, 2))
 return(out)}

 62

Appendix D

Derivatives of the Incomplete Gamma Function

 The function Surv.gam() is needed in Section 5 for use in the parameter
estimation programs for censored gamma data. The analysis is too lengthy to be included
there and the development may have general interest. Basically we need to compute the
first and second derivatives of the Incomplete Gamma function with respect to the shape
parameter.

 The formulas used are taken from [Abramowicz and Stegun] and their notation is
adopted. We focus on [Abramowicz and Stegun, (6.5.1), 6.5.4), and (6.5.29)]

 P(a, x) = dyey
)a(

1 yx

0

1a −−∫Γ
 (D.1)

 ∑ ∞

=
−−∗

++Γ
==γ

0j

j
xa

)1ja(
xe)x,a(Px)x,a(. (D.2)

The power series in (D.2) plays a key role. It will be used for values of x smaller than a.
With this understanding, let us develop a crude, but useful, bound for the remainder after
n terms.

 ∑ ∞

= ++Γnj

j

)1ja(
x =

)na(
1
+Γ)ja()na(

x j

nj ++∑ ∞

= L
 < ∑ ∞

++Γ
+

n j

jn

)na(
x

)na(
)na(

 = r
0r

n

)
na

x(
)na(

x ∑ ∞

= ++Γ
 =

xna
na

)na(
x n

−+
+

+Γ
 <

)na(
x n

+Γ
. (D.3)

This inequality allows one to choose n given a, x with x < a so that the power series can
be made as precise as desired.

The issue of x larger than a is managed by the recursive formula [Abramowicz
and Stegun, (6.5.21)]

 P(a+1, x) = P(a, x)
)1a(

ex xa

+Γ
−

−

, (D.4)

which, upon repeated use, yields

 Inc(r) = ∑ =

−
−

−+Γ
=−−

r

j

ja
x

ja
xexaPxraP

1)1(
),(),(. (D.5)

 63

Viewing the goal as the computation of P(a-r, x), one may always choose r so that x < a
and then the power series portion can finish the job. Such is the tactical plan. Both (D.2)
and (D.5) may be differentiated termwise.

0

(,) (1)
(1)

j
x

a j

xa x e a j
a j

γ ∞∗ −
=

= − Ψ + +
Γ + +∑ (D.6)

 2
0

(,) [(1) (1)]
(1)

j
x

aa j

xa x e a j a j
a j

γ ∞∗ −
=

′= Ψ + + − Ψ + +
Γ + +∑ (D.7)

1
() [ln() (1)]

(1)

a j
rx

a j

xInc r e x a j
a j

−
−

=
= − Ψ + −

Γ + −∑ (D.8)

2

1
() {[ln() (1)] (1)}

(1)

a j
rx

aa j

xInc r e x a j a j
a j

−
−

=
′= − Ψ + − − Ψ + −

Γ + −∑ . (D.9)

Using (D.1) and (D.2) we can express the survival function and derivatives of the

standard gamma random variable.

 S(a, x) = 1 − x a γ∗(a, x) = 1 − e −x
0 (1)

a j

j

x
a j

+
∞

= Γ + +∑ (D.10)

 Sa(a, x) =
0

[ln() (1)]
(1)

a j
x

j

xe x a j
a j

+
∞−

=
− − Ψ + +

Γ + +∑ (D.11)

 Saa(a, x) 2
0

{[ln() (1)] (1)}
(1)

a j
x

j

xe x a j a j
a j

+
∞−

=
′= − − Ψ + + − Ψ + +

Γ + +∑ (D.12)

Our goal is to orchestrate these formulas into a computational package usable for the
censored sampling likelihood equations. Moreover, the package should accept vector
input for x. The smaller values of x are easily managed using the power series. For other
values it is wise to use the tactic of shifting to larger values of the parameter a using
(D.5), (D.8), and (D.9). Accordingly, we partition the (a, x) plane into three horizontal
strips

 v1: 0 < x < 8; v2: 8 ≤ x < a0; v3: a0 ≤ x,

and a0 can be selected for power series truncation error control. Our programs use
a0 = 20. Further, each strip is partitioned selectively for purposes of invoking the tactic
of shifting to larger values of the parameter a. The rule in place is

 v1: a < a0; v2: a < 2a0; v3: a < 3a0.

 64

The main program that executes these rules is Surv.gam(). Sixteen terms are used
in the truncate power series. For these, Equations (D.10), (D.11), and (D.12) are
computed using the functions

 surv.gam(): surva.gam(); survaa.gam(), respectively.

When it is appropriate to shift to larger values of a, we invoke (D.5), (D.8), and
(D.9). These functions are called

 trans1(); trans2(); trans3(), respectively.

The output of Surv.gam is a three-row matrix and number of columns equal to the
cardinality of the data x. The three rows contain the zeroth, first and second derivatives.

S-Plus Codes

Surv.gam
function(a, x, a0 = 20, ep = 1e-009)
{# fname is Surv.gam
Integrates the programs surva.gam, survaa.gam
and trans2, trans3 to comput the survival function
and its derivatives wrt a and aa for the standard
gamma distribution with shape parameter a
and vector x. The input ep is for precision control.
 len <- length(x)
 S <- 1 - pgamma(x, a)
 v1 <- x < 8
 v2 <- 8 <= x & x < a0
 v3 <- a0 <= x
 Sa <- Saa <- rep(0, len)
 if(sum(v1 == T) > 0) {
 if(a >= a0) {
 Sa[v1] <- surva.gam(a, x[v1], a0)
 Saa[v1] <- survaa.gam(a, x[v1], a0)}
 else {
 r1 <- ceiling(a0 - a)
 Sa[v1] <- surva.gam(a + r1, x[v1], a0) - trans2(a, x[v1], r1)
 Saa[v1] <- survaa.gam(a + r1, x[v1], a0) - trans3(a, x[v1], r1)}}
 if(sum(v2 == T) > 0) {
 if(a >= 2 * a0) {
 Sa[v2] <- surva.gam(a, x[v2], a0)
 Saa[v2] <- survaa.gam(a, x[v2], a0)}
 else {
 r2 <- ceiling(2 * a0 - a)
 Sa[v2] <- surva.gam(a + r2, x[v2], a0) - trans2(a, x[v2], r2)
 Saa[v2] <- survaa.gam(a + r2, x[v2], a0) - trans3(a, x[v2], r2)}}

 65

 if(sum(v3 == T) > 0) {
 if(a >= 3 * a0) {
 Sa[v3] <- surva.gam(a, x[v3], a0)
 Saa[v3] <- survaa.gam(a, x[v3], a0)}
 else {
 r3 <- ceiling(3 * a0 - a)
 Sa[v3] <- surva.gam(a + r3, x[v3], a0) - trans2(a, x[v3], r3)
 Saa[v3] <- survaa.gam(a + r3, x[v3], a0) - trans3(a, x[v3], r3)}}
 out <- rbind(S, Sa, Saa)
 out}

surv.gam
function(a, x, a0)
{# fname is surv.gam
creates first 16 terms of the power series expansion of
the tail of the Incomplete gamma function. Useful
when a is large; tmp is neg of gammastar
 ind <- 0:15
 k <- length(x)
 X <- outer(x, ind, "^")
 fac <- matrix(gamma(a + 1 + ind), k, 16, byrow = T)
 tmp <- exp(- x) * x^a * apply(X/fac, 1, sum)
 S <- 1 - tmp
 S}

surva.gam
function(a, x, a0)
{# fname is surva.gam
creates first 16 terms of the power series expansion of
the derivative of the Incomplete gamma function. Useful
when a is large; tmp is neg of gammastar sub a
 ind <- 0:15
 k <- length(x)
 X <- outer(x, ind, "^")
 fac <- matrix(psi(a + 1 + ind)[1,]/gamma(a + 1 + ind), k, 16, byrow = T)
 tmp <- exp(- x) * x^a * apply(X * fac, 1, sum)
 Sa <- log(x) * (- pgamma(x, a)) + tmp
 Sa}

survaa.gam
function(a, x, a0)
{# fname is survaa.gam
deals with Saa for a large. Includes the sum of
the first 16 terms in the power series expansion
of x to the a times gammastar sub aa
 ind <- 0:15

 66

 k <- length(x)
 X <- outer(x, a + ind, "^") # Pa <- exp(- x) * apply(X/matrix(gamma(a + 1 +
ind), k, 16, byrow = T), 1, sum)
 brac <- outer(log(x), psi(a + 1 + ind)[1,], "-")
 den <- matrix(gamma(a + 1 + ind), k, 16, byrow = T)
 tmp <- matrix(psi(a + 1 + ind)[2,], k, 16, byrow = T)
 Saa <- exp(- x) * apply((X * (brac^2 - tmp))/den, 1, sum)
 Saa}

trans1
function(a, x, r)
{# fname is trans1
finite series transition of standard gamma cdf
from small shape parameter to large shape parameter.
The output is P(a-r,x)-P(a,x)= Inc
 k <- length(x)
 ind <- 1:r
 N <- length(ind)
 X <- outer(x, a - ind, "^")
 den <- matrix(gamma(a + 1 - ind), k, N, byrow = T)
 S <- Inc <- exp(- x) * apply(X/den, 1, sum)
 S}

trans2
function(a, x, r)
{# fname is trans2
finite series transition of the derivative of the standard
gamma survivor function from small shape parameter to large
shape parameter. The output is Sa(a+r,x)-Sa(a,x)=Inca
 k <- length(x)
 ind <- 1:r
 first <- matrix(0, r, k)
 for(j in 1:k)
 first[, j] <- dgamma(x[j], a + ind)
 sec <- matrix(0, r, k)
 for(j in 1:k)
 sec[, j] <- dgamma(x[j], a + ind) * psi(a + ind)[1,]
 Sa <- Inca <- log(x) * apply(first, 2, sum) - apply(sec, 2, sum)
 Sa}
trans3
function(a, x, r)
{# fname is trans3
finite series transition of the 2nd derivative of the standard
gamma survivor function from small shape parameter to large
shape parameter. The output is Saa(a+r,x)-Saa(a,x)=Inca
 k <- length(x)

 67

 ind <- 1:r
 dens <- matrix(0, k, r)
 brac <- outer(log(x), psi(a + ind)[1,], "-")
 for(i in 1:k)
 dens[i,] <- dgamma(x[i], a + ind)
 sec <- matrix(psi(a + ind)[2,], k, r, byrow = T)
 Saa <- Incaa <- apply(dens * (brac^2 - sec), 1, sum)
 Saa}

 68

Appendix E

Listings of Miscellaneous Code

gam.est
function(x, ep = 1e-006)
{# fname is gam.est; programmer: R. Read
returns the mle estimates for the gamma distribution
base upon the data x. Newton-Raphson iteration.
output is maximum likelihood for shape, rate, n, method
of moments for shape, rate
 n <- length(x)
 xb <- mean(x)
 lnbx <- mean(log(x))
 ss <- var(x)
 rate <- xb/ss
 lam0 <- rate # initialize with meth of moments ests.
 shape <- xb^2/ss
 x0 <- lnbx - log(xb)
 alph <- shape
 repeat {
 r0 <- shape
 lam <- shape/xb
 g <- log(shape) + x0 - psi(shape)[1,]
 gp <- 1/shape - psi(shape)[2,]
 shape <- shape - g/gp
 if(abs(shape - r0) < ep)
 break}
 rate <- shape/xb
 out <- c(shape, rate, n, alph, lam0)
 names(out) <- c("alpha-mle", "lambda-mle", "n", "alpha-mm", "lambda-mm")
 out}

The function ellipse returns a three-column matrix. Column 1 contains the horizontal and
the other two columns provide the two lobes for the ellipse. The user must construct the
plot.

ellipse
function(q, m, d, n0 = 100)
{# fname is ellipse. Revised December 2002
q is the matrix of the quadratic form (2x2): (x, y)q(x, y)'
m is the centering vector; (m[x], m[y])
d is the (squared) distance value for the contour
n0 is the half-size of the number of points in each lobe
of the ellipse.

 69

 a <- q[1, 1]
 b <- q[1, 2]
 c1 <- q[2, 2]
 det <- a * c1 - b * b
 x0 <- sqrt((c1 * d)/det) - 1e-008 # = max(x); latter term helps insure that the
fuzz won't stop the program
 x <- sqrt((seq(1, n0, 1) * x0)/n0) * sqrt(x0) # Refines the partition for the
extreme values of x.
 x <- c(- rev(x), 0, x)
 rad <- sqrt(d * c1 - det * x * x)
 y1 <- (- b * x)/c1 + rad/c1
 y2 <- (- b * x)/c1 - rad/c1
 x <- x + m[1]
 y1 <- y1 + m[2]
 y2 <- y2 + m[2]
 z <- matrix(c(x, y1, y2), ncol = 3)
 z}

The following function produces Figure 3.1. Once executed, the user must point the
cursor to a place in the lower right space of the plots and click. This will print the
legend and close out the function.

exp1.lnorm
function(mu = 0, sig = 1)
{# fname is exp1.lnorm
survival functions plotted to compare Exp(1) w/lognormal(mu, sig)
 x <- c(seq(0.02, 0.55, 0.01), seq(0.56, 3.6, 0.02))
 y <- dnorm((log(x) - mu)/sig)/(x * sig)
 Sl <- 1 - pnorm(log(x) - mu)/sig
 he <- rep(1, length(x))
 xx <- x[- (1:27)]
 Se <- exp(- xx)
 yy <- exp(- xx)
 par1 <- par
 par(mfrow = c(3, 2))
 plot(x, y, ylim = c(0, 0.75), ylab = "density function", type = "l")
 lines(xx, yy, lty = 4)
 title(main = "Compare Density functions ")
 plot(x, exp(- x), ylab = "survivor function", type = "l", lty = 4)
 title(main = "Compare Survivor Functions ")
 lines(x, Sl)
 plot(x, y/Sl, ylim = c(0, 1.1), ylab = "hazard function", type = "l")
 lines(x, he, lty = 4)
 title(main = "Compare Hazard Functions ")
 plot(x, x, ylab = "cum haz function", type = "l", lty = 4)

 70

 lines(x, - log(Sl))
 title(main = "Compare Cum. Hazard Functions ")
 SSl <- exp(mu + 0.5 * sig) * (1 - pnorm(x - sig)) - exp(mu + sig * x) *
(1 - pnorm(x))
 Ll <- SSl/Sl
 a <- max(Ll)
 b1 <- min(x)
 b2 <- max(x)
 plot(x, Ll, ylim = c(0, 1.5 * a), ylab = "expected resid. life", type = "l")
 lines(x, he, lty = 4)
 title(main = "Compare E{Residual Life} ")
 x <- c(0, 1, 1, 0, 0)
 y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F)
 par(mar = c(4.9, 3, 3.8, 0.9))
 plot(x, y, type = "l", xlab = "", ylab = "", axes = F)
 lines(c(0, 0), c(1, 0), lty = 1)
 lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext)
 title(main = "Legend")
 par <- par1
 leg.names <- c("Lognormal(0, 1) ", " mean = 1.65 stdev = 1.68",
"Exponential(1) ",
 " mean = 1 stdev = 1")
 legend(locator(1), leg.names, lty = c(1, 0, 4, 0))}

The following code produces Figure 3.2. Once plotted the user must click on the
legend box in order to place information there and close out the function.

wei1.gam
function(alph = 0.75, beta = 2)
{# fname is wei1.gam
survival functions plotted to compare Weibull(3/4, 2) w/gamma(.72, rate= .28)
gamma parameters are mle's from simulated rweibull(200, 3/4, 2)
 x <- c(0.01, seq(0.02, 15, 0.08))
 y <- dweibull(x, 0.75, 2)
 Sw <- 1 - pweibull(x, 0.75, 2)
 Sg <- 1 - pgamma(x, 0.72, 0.28)
 yy <- dgamma(x, 0.72, 0.28)
 par1 <- par
 par(mfrow = c(3, 2))
 plot(x, y, ylim = c(0, 1.45), ylab = "density function", type = "l")
 lines(x, yy, lty = 4)
 title(main = "Compare Density functions ")
 plot(x, Sw, ylab = "survivor function", type = "l")
 title(main = "Compare Survivor Functions ")
 lines(x, Sg, lty = 4)

 71

 plot(x, y/Sw, ylim = c(0, 1.45), ylab = "hazard function", type = "l")
 lines(x, yy/Sg, lty = 4)
 title(main = "Compare Hazard Functions ")
 plot(x, - log(Sw), ylab = "cum haz function", type = "l", ylim = c(0, 5))
 lines(x, - log(Sg), lty = 4)
 title(main = "Compare Cum. Hazard Functions ")
 SSw <- (8/3) * gamma(4/3) * (1 - pgamma((0.5 * x)^0.75, 4/3))
 Lw <- SSw/Sw
 plot(x, Lw, ylab = "expected resid. life", type = "l")
 SSg <- - x * Sg + (0.72/0.28) * (1 - pgamma(x, 1.72, 0.28))
 Lg <- SSg/Sg
 lines(x, Lg, lty = 4)
 title(main = "Compare E{Residual Life} ")
 x <- c(0, 1, 1, 0, 0)
 y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F)
 par(mar = c(4.9, 3, 3.8, 0.9))
 plot(x, y, type = "l", xlab = "", ylab = "", axes = F)
 lines(c(0, 0), c(1, 0), lty = 1)
 lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext)
 title(main = "Legend")
 par <- par1
 leg.names <- c("Weibull(0.75, 2) ", " mean = 1.84 stdev = 2.33",
"Gamma(.72, .28) ", " mean = 2.57 stdev = 3.03")
 legend(locator(1), leg.names, lty = c(1, 0, 4, 0))}

The following function produces Figure 3.3. Once plotted the user must click on the
legend box in order to place information there and close out the function.

wei2.gam
function(alph = 2, beta = 2)
{# fname is wei2.gam
survival functions plotted to compare Weibull(2, 2) w/gamma(3.75, rate = 2)
gamma parameters are close to the mle's from simulated rweibull(200, 2, 2)
 x <- seq(0, 5, 0.025)
 y <- dweibull(x, 2, 2)
 Sw <- 1 - pweibull(x, 2, 2)
 Sg <- 1 - pgamma(x, 3.75, 2)
 yy <- dgamma(x, 3.75, 2)
 par1 <- par
 par(mfrow = c(3, 2))
 plot(x, y, ylim = c(0, 0.48), ylab = "density function", type = "l")
 lines(x, yy, lty = 4)
 title(main = "Compare Density functions ")
 plot(x, Sw, ylab = "survivor function", type = "l")
 title(main = "Compare Survivor Functions ")

 72

 lines(x, Sg, lty = 4)
 plot(x, y/Sw, ylab = "hazard function", type = "l")
 lines(x, yy/Sg, lty = 4)
 title(main = "Compare Hazard Functions ")
 plot(x, - log(Sw), ylab = "cum haz function", type = "l")
 lines(x, - log(Sg), lty = 4)
 title(main = "Compare Cum. Hazard Functions ")
 SSw <- gamma(0.5) * (1 - pgamma((0.5 * x)^2, 0.5))
 Lw <- SSw/Sw
 yM <- max(Lg)
 SSg <- - x * Sg + (3.75/2) * (1 - pgamma(x, 4.75, 2))
 Lg <- SSg/Sg
 ym <- min(Lw)
 plot(x, Lw, ylab = "expected resid. life", type = "l", ylim = c(ym, yM))
 lines(x, Lg, lty = 4)
 title(main = "Compare E{Residual Life} ")
 x <- c(0, 1, 1, 0, 0)
 y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F)
 par(mar = c(4.9, 3, 3.8, 0.9))
 plot(x, y, type = "l", xlab = "", ylab = "", axes = F)
 lines(c(0, 0), c(1, 0), lty = 1)
 lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext)
 title(main = "Legend")
 par <- par1
 leg.names <- c("Weibull(2, 2) ", " mean = 1.77 stdev = 2.18", "Gamma(3.75, 2)
", " mean = 1.88 stdev = 0.97")
 legend(locator(1), leg.names, lty = c(1, 0, 4, 0))}

wei.cost
function(rat, alpha, beta)
{# fname is wei.cost
rat is the ratio of
 xx <- ceiling(log(500))
 x2 <- beta * xx^(1/alpha)
 x <- seq(0, x2, length = 200)
 y <- (x/beta)^alpha
 cost <- ((alpha/beta) * (1 + rat * pgamma(y, 1)))/(gamma(1/alpha) * pgamma(y,
1/alpha))
 m <- min(cost)
 M <- max(x)
 ind <- match(m, cost) # print(x[ind], m)
plot(x, cost, type = "l")
 out <- c(ind, M, m)
 out}

gam.cost

 73

function(rat, alpha, lam)
{# fname is gam.cost
rat is the ratio
alpha & lam are the parameters of the gamma distribution
output is the min cost planned replacement policy
 x2 <- alpha/lam + (3 * sqrt(alpha))/lam
 x <- seq(0.02, x2, length = 200)
 Sg <- 1 - pgamma(x, alpha, lam)
 cost <- (1 + rat * pgamma(x, alpha, lam))/(x * Sg + (alpha/lam) * pgamma(x,
1 + alpha, lam))
 m <- min(cost)
 M <- max(x)
 ind <- match(m, cost)
 x0 <- round(x[ind], 2)
 print(c(ind, x0, m)) # plot(x, cost, type = "l")
 out <- c(ind, x0, M, m)
 out}

NormCT
function(x, alph, graph = T)
{# fname is NormCT
this is a plotting function that produces 1-alph level
confidence trapezoids for (mu, sig) for normal data x.
If graph = F then the output is a row matrix containing
the vertices of the trapezoid.
 out <- NULL
 n <- length(x)
 alph1 <- 1 - sqrt(1 - alph)
 z0 <- - qnorm(alph1/2)
 k1 <- qchisq(alph1/2, n - 1)
 k2 <- qchisq(1 - alph1/2, n - 1)
 SS <- (n - 1) * var(x)
 xb <- mean(x)
 s <- stdev(x)
 sigl <- sqrt(SS/k2)
 sigu <- sqrt(SS/k1)
 xlmin <- xb - (z0 * sigl)/sqrt(n)
 xlmax <- xb + (z0 * sigl)/sqrt(n)
 xumin <- xb - (z0 * sigu)/sqrt(n)
 xumax <- xb + (z0 * sigu)/sqrt(n)
 xx <- c(xlmin, xlmax, xumax, xumin, xlmin)
 yy <- c(sigl, sigl, sigu, sigu, sigl)
 if(graph == T) {
 plot(xx, yy, type = "l", xlab = "mu", ylab = "sigma")
 title(main = "Confidence Trapezoid for Normal Distribution")
 points(xb, s)}

 74

 else out <- rbind(xx, yy)
 return(out)}

area.comp
function(x, w, u0 = 0, y0 = 0, rnd = 4)
{# fname is area.comp
Computes the signed net areas separating the empirical
cdf's of the ordered sets x and w. These cdf's are polygonal
curves which are connected with straight line segments. The
two data sets are of the same length. It seems necessary to
do some rounding because of "fuzz" problems; hence the input
rounding quantity, "rnd".
 n0 <- length(x)
 x <- round(x, rnd)
 w <- round(w, rnd)
 out <- matrix(0, ceiling((1 + n0)/2), 5)
 jj <- 1
 repeat {
 out[jj,] <- seg.comp(x, w, u0, y0, n0, jj)
 u0 <- round(out[jj, 4], rnd)
 tmp <- round(out[jj, 5], rnd)
 y0 <- tmp - floor(tmp)
 x <- x[x > u0]
 w <- w[w > u0]
 n1 <- length(x)
 n2 <- length(w)
 if(n1 == 0 | n2 == 0)
 break
 if(all(x == w))
 break
 jj <- jj + 1}
 out <- out[1:jj,]
 out}

seg.comp
function(x, w, u0, y0, n0, jj)
{# fname is seg.comp
Computes the areas under the polygonal curves, between
two knots, and returns their difference (signed). A flag
is set = 0 if the x cdf is above the w cdf, and set = 1
otherwise. The x and w vectors are mono increasing; n is
the number of points in the full sets. The initial points
(u0, y0) mark the beginning of the segment; the crossover
point (u1, y1) is the segment end and is computed internally;

 75

when segment is open ended, it is (x[n], n). The marker f1
is set to one when the segment is close on the right.
f2 = 1 means the right knot is not a data point.
 n <- f <- y1 <- length(x) # initialization
 f1 <- flag <- rect <- f2 <- 0
 u1 <- max(x[1], w[1])
 ss <- sort(c(x, w)) # first look for superpositions and remove
 repeat {
 if(x[1] != w[1])
 break
 u0 <- x[1]
 x <- x[-1]
 w <- w[-1]
 ss <- ss[- (1:2)]
 n <- f <- n - 1
 if(n == 1 | n == 0) {
 f <- 1
 y1 <- 1
 break}
 else {
 if(x[1] == w[1]) {
 ss <- ss[- (1:2)]
 u0 <- x[1]
 x <- x[-1]
 w <- w[-1]
 n <- f <- y1 <- length(x)
 if(n == 0)
 break }}}
Set the flag & initiate
 if(n > 0)
 j <- 1:n
 if(length(ss) > 0) {
 ind <- j[x[j] >= w[j]]
 if(w[1] == ss[1]) {
 flag <- 1
 ind <- j[w[j] >= x[j]] }
 if(is.na(ind[1]) == F) {
 f1 <- 1
 f <- ind[1]}}
initialize the end corrections and the center computations
 area1 <- area2 <- adj1 <- adj2 <- 0
 u1 <- max(x[f], w[f])
 y1 <- f
 if(f > 1 & f1 == 1) {
 P1 <- c(x[(f - 1):f])
 P2 <- c(w[(f - 1):f])

 76

 tout <- sol.pt(P1, P2)
 u1 <- tout[1]
 y1 <- tout[2] + f
 if(x[f] != w[f]) {
 f2 <- 1
 f <- f - 1}}
prepare for the open ended case
 if(n > 0) {rect <- f * abs(x[n] - w[n])
 j <- 1:n
 area1 <- ((x[1] - u0) * (1 + y0))/2
 area2 <- ((w[1] - u0) * (1 + y0))/2
 if(f > 1) {area1 <- area1 + ((f1 * f2 * (u1 - x[f - 1]) * (y1 + f - 1))/2)
 area2 <- area2 + ((f1 * f2 * (u1 - w[f - 1]) * (y1 + f - 1))/2)
 ff <- f # prep adjustment for existence of interior part of segment
 if(x[f] != w[f])
 ff <- ff - 1
 adj1 <- 0.5 * (x[ff] * (2 * ff + 1) - x[1]) - sum(x[1:ff])
 adj2 <- 0.5 * (w[ff] * (2 * ff + 1) - w[1]) - sum(w[1:ff]) }
 area1 <- area1 + (1 - f1) * (1 - flag) * rect
 area2 <- area2 + (1 - f1) * flag * rect }
 net <- (area1 + adj1 - area2 - adj2)/n0
 out <- c(net, flag, f, u1, y1)
 names(out) <- c("net", "flag", "seg.length", "hend", "vend")
 out}

sol.pt
function(P1, P2)
{# fname is sol.pt
finds the crossover solution point
for two cdf's that have the same number
of pts in the horiz & equi spaced in the vertical.
If both delx and delq are zero, then y is set to
y = -1. Otherwise 0 < = y < 1
 x1 <- P1[1]
 x2 <- P1[2]
 w1 <- P2[1]
 w2 <- P2[2]
 delx <- x2 - x1
 delw <- w2 - w1
 if(delx == 0 & delw == 0) {
 x <- x1
 y <- -1 }
 if(delx == 0 & delw > 0) {
 x <- x1

 77

 y <- (x - w1)/delw }
 if(delx > 0 & delw == 0) {
 x <- w1
 y <- (x - x1)/delx }
 if(delx > 0 & delw > 0) {
 x <- (x1 * delw - w1 * delx)/(delw - delx)
 y <- (x - w1)/delw
 if(x1 == w1)
 y <- 0 }
 out <- c(x, y)
 out}

sol.pt
function(P1, P2)
{# fname is sol.pt
finds the crossover solution point
for two cdf's that have the same number
of pts in the horiz & equi spaced in the vertical.
If both delx and delq are zero, then y is set to
y = -1. Otherwise 0 < = y < 1
 x1 <- P1[1]
 x2 <- P1[2]
 w1 <- P2[1]
 w2 <- P2[2]
 delx <- x2 - x1
 delw <- w2 - w1
 if(delx == 0 & delw == 0) {
 x <- x1
 y <- -1 }
 if(delx == 0 & delw > 0) {
 x <- x1
 y <- (x - w1)/delw}
 if(delx > 0 & delw == 0) {
 x <- w1
 y <- (x - x1)/delx}
 if(delx > 0 & delw > 0) {
 x <- (x1 * delw - w1 * delx)/(delw - delx)
 y <- (x - w1)/delw
 if(x1 == w1)
 y <- 0}
 out <- c(x, y)
 out}

Newt.wei
function(x, t, param, ep = 0.0001)
{# fname is Newt.wei

 78

Newton-Raphson method, then bisection search used to find mle
for the Weibull distribution using the extreme value distribution technique.
Data input is (x, t); param initialization is (u, b), b > 0
output is (u, b, alph, beta). r is cardinality of uncensored set
 r <- length(x)
 v <- log(x)
 vb <- mean(v)
 lt <- log(t)
 b <- param[2]
 u <- param[1]
 vv <- c(v, lt)
 b2 <- b1 <- b
 h1 <- h2 <- 0
 j <- 1
 flag <- 1
 repeat {
 if(flag == 1) {
 D <- sum(exp(vv/b))
 N <- sum(vv^2 * exp(vv/b))
 A <- sum(vv * exp(vv/b))
 h <- A/D - b - vb
 hp <- - N/(D * b^2) + A^2/(D * b)^2 - 1
 b <- b1 - h/hp
 if(b <= 0)
 b <- 0.01
 if(max(abs(h), abs(b - b1)) < ep)
 break
 if(j/2 != round(j/2)) {
 b1 <- b
 h1 <- h }
 if(j/2 == round(j/2)) {
 b2 <- b
 h2 <- h }
 j <- j + 1
 if(sign(h2 * h1) < 0)
 flag <- 0}
 if(j == 25)
 break
 if(flag == 0) {
 b <- (b1 + b2)/2
 D <- sum(exp(vv/b))
 A <- sum(vv * exp(vv/b))
 h <- A/D - b - vb
 if(sign(h * h1 < 0)) {
 h2 <- h
 b2 <- b }

 79

 if(sign(h * h2 < 0)) {
 h1 <- h
 b1 <- b }
 if(max(abs(h), abs(b - b1)) < ep)
 break
 j <- j + 1
 if(j == 50)
 break} }
 u <- b * log(D/r)
 alph <- 1/b
 beta <- exp(u)
 out <- c(u, b, alph, beta, flag)
 names(out) <- c("u", "b", "alph", "beta", "flag")
 return(out)}

exp.lnorm
function(mu = 0, sig = 1)
{# fname is exp.lnorm
survival functions plotted to compare Exp(1) w/lognormal(mu, sig)
 x <- c(seq(0.02, 0.55, 0.01), seq(0.56, 3.6, 0.02))
 y <- dnorm((log(x) - mu)/sig)/(x * sig)
 Sl <- 1 - pnorm(log(x) - mu)/sig
 he <- rep(1, length(x))
 xx <- x[- (1:27)]
 Se <- exp(- xx)
 yy <- exp(- xx)
 split.screen(c(3, 2))
 oldpar <- par()
 on.exit(par(oldpar))
 screen(1)
 par(cex = 0.8, mar = c(5, 6, 4, 2))
 plot(x, y, ylim = c(0, 0.75), ylab = "density function", type = "l")
 lines(xx, yy, lty = 4)
 title(main = "Compare Density functions ")
 screen(2)
 par(cex = 0.8, mar = c(5, 6, 4, 2))
 plot(x, exp(- x), ylab = "survivor function", type = "l", lty = 4)
 title(main = "Compare Survivor Functions ")
 lines(x, Sl)
 screen(3)
 par(cex = 0.8, mar = c(5, 6, 4, 2))
 plot(x, y/Sl, ylim = c(0, 1.1), ylab = "hazard function", type = "l")
 lines(x, he, lty = 4)
 title(main = "Compare Hazard Functions ")
 screen(4)

 80

 par(cex = 0.8, mar = c(5, 6, 4, 2))
 plot(x, x, ylab = "cum haz function", type = "l", lty = 4)
 lines(x, - log(Sl))
 title(main = "Compare Cum. Hazard Functions ")
 screen(5)
 par(cex = 0.8, mar = c(5, 6, 4, 2))
 SSl <- exp(mu + 0.5 * sig) * (1 - pnorm(x - sig)) - exp(mu + sig * x) *
(1 - pnorm(x))
 Ll <- SSl/Sl
 a <- max(Ll)
 b1 <- min(x)
 b2 <- max(x)
 plot(x, Ll, ylim = c(0, 1.5 * a), ylab = "expected resid. life", type = "l")
 lines(x, he, lty = 4)
 title(main = "Compare E{Residual Life} ")
 screen(6)
 par(cex = 0.8, mar = c(5, 6, 4, 2))
 x <- c(0, 1, 1, 0, 0)
 y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F)
 plot(x, y, type = "n", xlab = "", ylab = "", axes = F) ## lines(c(0, 0), c(1, 0),
lty = 1)
lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext)
 leg.names <- c("Lognormal(0, 1)", "mean = 1.65", "sd = 1.68", "Exponential(1)",
"mean = 1", "sd = 1", "", "")
 leg.xy <- locator(1)
 legend(leg.xy$x, leg.xy$y, leg.names, lty = c(1, 0, 0, 4, 0, 0, 0, 0), cex = 1)
 close.screen(all = T)}

ext.newt
function(input, dat, ep = 10^-4)
{# fname is ext.newt
Newton's method applied to extreme value distribution
 u <- u0 <- input[1]
 b <- b0 <- input[2]
 x <- dat[dat[, 2] == 1, 1]
 a <- dat[, 2]
 w <- a * dat[, 1] + (1 - a) * dat[, 3]
 r <- sum(a)
 g0 <- 0
 repeat {g <- sum(w * exp(w/b))/sum(exp(w/b)) - b - mean(x)
 g1 <- sum(w^2 * exp(w/b))/sum(exp(w/b))
 g2 <- sum(w * exp(w/b))/sum(exp(w/b))
 gp <- - (g1 + g2^2 - 1)/b^2
 b <- b0 - g/gp
 if(b < 0)
 b <- 0.2

 81

 if(max(abs(b - b0), abs(g - g0)) < ep)
 break
 g0 <- g
 b0 <- b }
 u <- b * log(sum(exp(w/b))/r)
 return(c(u, b))}

cost.comp
function(rat)
{# fname is cost.comp
Compares the cost of planned replacement curves of our two competing IFR models
Weibull(2, 2) & gamma(3.75, rate = 2)
Three sets of curves are generated, one for each of the n ratios in the input rat
 n <- length(rat)
 aw <- 2
 bw <- 2
 xx <- log(500)
 x2 <- 0.25 * bw * xx * (1/aw)
 ag <- 3.75
 lam <- 2
 x1 <- ag/lam + (1 * sqrt(ag))/lam
 x3 <- max(x1, x2) # range of variate values
 x <- seq(0, x3, length = 200)
 y <- (x/bw)^aw #y <- dweibull(x, 2, 2)
 Sw <- 1 - pweibull(x, 2, 2)
 Sg <- 1 - pgamma(x, 3.75, 2) #yy <- dgamma(x, 3.75, 2)
 par1 <- par
 par(mfrow = c(n, 1))
 numw <- (aw/bw) * (1 + outer(rat, pgamma(y, 1), "*"))
 denw <- matrix(gamma(1/aw) * pgamma(y, 1/aw), byrow = T, nrow = n, ncol =
200)
 costw <- numw/denw
 numg <- 1 + outer(rat, pgamma(x, ag, lam), "*")
 deng <- matrix(x * Sg + (ag/lam) * pgamma(x, 1 + ag, lam), byrow = T, nrow =
n, ncol = 200)
 costg <- numg/deng
 for(j in 1:n) {
 plot(x, costw[j,], ylab = c("rel. cost"), xlab = c("time in service"), type =
"l")
 lines(x, costg[j,], lty = 4)
 title(main = paste("ratio = ", rat[j])) }
 mcostw <- apply(costw, 1, min)
 mcostg <- apply(costg, 1, min)
 out <- rbind(mcostw, mcostg) #x <- c(0, 1, 1, 0, 0)
y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F)
par(mar = c(4.9, 3, 3.8, 0.9))

 82

plot(x, y, type = "l", xlab = "", ylab = "", axes = F)
lines(c(0, 0), c(1, 0), lty = 1)
lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext)
title(main = "Legend")
 par <- par1 #leg.names <- c("Weibull(2, 2) ", " mean = 1.77 stdev = 2.18",
"Gamma(3.75, 2) ", " mean = 1.88 stdev = 0.97")
legend(locator(1), leg.names, lty = c(1, 0, 4, 0))
 out}

gam.cost
function(rat, alpha, lam)
{# fname is gam.cost
rat is the ratio
alpha & lam are the parameters of the gamma distribution
output is the min cost planned replacement policy
 x2 <- alpha/lam + (3 * sqrt(alpha))/lam
 x <- seq(0.02, x2, length = 200)
 Sg <- 1 - pgamma(x, alpha, lam)
 cost <- (1 + rat * pgamma(x, alpha, lam))/(x * Sg + (alpha/lam) * pgamma(x,
1 + alpha, lam))
 m <- min(cost)
 M <- max(x)
 ind <- match(m, cost)
 x0 <- round(x[ind], 2)
 print(c(ind, x0, m)) #plot(x, cost, type = "l")
 out <- c(ind, x0, M, m)
 out}

 ks.dist
function(dat, mod)
{# fname is ks.dist
the distance between the data cdf and the model cdf
using the Kolmorgoroc-Smirnov distance function. The
values of mod must be the cdf of the model evaluated
at the values of dat.
 n <- length(dat)
 dat <- sort(dat)
 mod <- sort(mod)
 p <- (1:n)/n
 pl <- c(0, p[- n])
 ks <- max(abs(c(mod - p, pl - mod)))
 return(ks)}

Gsq.norm
function(x, y, xb, s, n)
{# fname is Gsq.norm

 83

This program computes the vertical component, z, of the
G-squared statistic over the grid work that results
from the x, y values, using the normal likelihood
function. Thus, one can construct contour plots of
(x, y, z). xb and s are the mle's of mu and sigma from
a random sample of size n. x values go with mu;
y with sigma
 SS <- n * s^2
 tmp1 <- 2 * n * log(y/s) + SS/y^2 - n
 tmp2 <- n * outer((xb - x)^2, y^2, "/")
 zz <- tmp1 + t(tmp2)
 z <- t(zz)
 return(z)}

Gsq.gam
function(dat, x, y, ah, bh, n)
{# fname is Gsq.gam
This program computes the vertical component, z, of the
G-squared statistic over the grid work that results
from the x, y values, using the gamma(alpha, beta)likelihood
function. Thus, one can construct contour plots of
(x,y,z). ah and bh are the mle's of alpha and beta from
a random sample, dat, of size n. x values go with alpha;
y with beta
 xb <- mean(dat)
 blx <- mean(log(dat))
 za <- - lgamma(ah) - ah * log(bh) + ah * blx - ah # scalar term
 z1 <- lgamma(x) - x * blx # vector terms
 z21 <- outer(x, log(y), "*")
 z22 <- xb * matrix(1/y, length(x), length(y), byrow = T)
 zz <- za + z1 + z21 + z22
 out <- 2 * n * zz
 return(out)}

Gsq.wei
function(dat, x, y, ah, bh, n)
{# fname is Gsq.wei
This program computes the vertical component, z, of the
G-squared statistic over the grid work that results
from the x, y values, using the Weibull likelihood
function. Thus, one can construct contour plots of
(x, y, z). ah and bh are the mle's of shape and scale
a random sample, dat, of size n. x values go with ah;
y with bh
 blx <- mean(log(dat))

 84

 z0 <- log(ah) - ah * log(bh) + ah * blx - 1 # scalars
 z1 <- log(x) + x * blx # vectors
 v <- outer(x, log(y), "*")
 xba <- apply(outer(dat, x, "^"), 2, sum)/n
 zz <- z0 - z1 + v + xba * exp(- v)
 z <- 2 * n * zz
 return(z)}

 85

REFERENCES

Abramowitz, M. and Stegun, I.R. (1964). Handbook of Mathematical Functions, National
Bureau of Standards, Applied Mathematics Series 55.

Ascher, H. and Feingold, H. (1984). Repairable Systems Reliability, Marcel Dekker.

Barlow, R.E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing,

Wiley.

Barndorff-Nielsen, O.E. and Cox, D.R. (1994). Inference and Asymptotics, Chapman and

Hall.

Billmann, B., Antle, C., and Bain, L.J. (1972). “Statistical Inferences from Censored

Weibull Samples,” Technometrics, 14, pp. 831-840.

Chambers, J.M. (1977). Computational Methods for Data Analysis, Wiley.

Cox, D.R. and Hinckley, D.V. (1974), Theoretical Statistics, Chapman and Hall, p. 309.

Erdelyi, A. (1955). Asymptotic Expansions, Dover.

Gross, A.J. and Clark, V.A. (1975). Survival Distributions: Reliability Applications in the

Biomedical Sciences, Wiley.

Harter, H.L. and Moore, A.H. (1967). “Asymptotic Variances and Covariances of

Maximum Likelihood Estimators, from Censored Samples, of the Parameters of
the Gamma and Weibull Distributions,” Annals of Math. Stat., 38, pp. 557-570.

Kalbfleisch, J.D. and Prentice, R.L. (1980). The Statistical Analysis of Failure Time

Data, Wiley.

Kumamoto, H. and Henley, E.J. (1996). “Probabilistic Risk Assessment and Management

for Engineers and Scientists,” IEEE Press.

Lawless, J.F. (1981). Statistical Models and Methods for Lifetime Data, Wiley.

Lawless, J.F. (1975). “Construction of Tolerance Bounds for the Extreme Value and

Weibull Distributions,” Technometrics, 177, pp. 255-261.

Leemis, L.M. (1995). Reliability, Prentice Hall.

Leitch, R.D. (1995). Reliability Analysis for Engineers, Oxford.

Lewis, E.E. (1996). Introduction to Reliability Engineering, Wiley.

 86

Meeker, W.A. and Escobar, L.A. (1998). Statistical Methods for Reliability Data, Wiley.
Modarres, M. (1993). Reliability and Risk Analysis, Dekker.

O’Conner, P.D.T. (1981). Practical Reliability Engineering, Heyden.

Proschan, F. (1963). “Theoretical Explanation of observed Decreasing Failure Rate,”

Technometrics, 5, pp. 375-383.

Wilk, M.B., Gnanadesikan, R., and Huyett, M.J. (1962). “Estimation of Parameters of the

Gamma Distribution Using Order Statistics,” Biometrika, 49, pp. 525-545.

 87

INITIAL DISTRIBUTION LIST

1. Research Office (Code 09)...1
Naval Postgraduate School
Monterey, CA 93943-5000

2. Dudley Knox Library (Code 013)..2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Defense Technical Information Center..2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

4. Richard Mastowski (Editorial Assistant) ...2
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

5. Professor Robert R. Read (Code OR/Re) ..3
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

6. Associate Professor Samuel E. Buttrey (Code OR/Sb) ...1
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

7. Assistant Professor Robert A. Koyak (Code OR/Kr) ..1
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

8. Associate Professor Lyn R. Whitaker (Code OR/Wh) ..1
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

 88

9. Senior Lecturer David Olwell (Code OR/Ol) ..1
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

10. Distinguished Professor Donald P. Gaver, Jr. (Code OR/Gv).......................................1
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

11. Professor Patricia A. Jacobs (Code OR/Jc)..1
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

12. Professor Moshe Kress (Code OR)..1
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

13. Professor Alan R. Washburn (Code OR/Wa) ..1
Department of Operations Research
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943-5219

14. Major Scott G. Frickenstein, USAF...1
Chief, Commander’s Action Group
Office of the Superintendent
HQ, USAFA/CCX
2304 Cadet Drive, Suite 342
USAF Academy, CO 80840-5001

